
H. Stachel: Approximate and shortened translation of

Carl Gustav Jacob Jacobi:
Ueber die Anwendung der elliptischen Transcendenten auf ein be-
kanntes Problem der Elementargeometrie: “Die Relation zwischen der

Distanz der Mittelpuncte und den Radien zweier Kreise zu finden, von denen der

eine einem unregelmäßigen Polygon eingeschrieben, der andere semselben umge-

schrieben ist.” Crelle’s Journal 3/4, 1828

On the application of elliptic functions on a problem of elementary
geometry: “the relation between the radii and center distance of two circles that

are respectively circumscribed or inscribed to a non-regular polygon.”

1.– 3.

Given an N -sided polygon with a circumcircle and an incircle, let R and r denote
their radii and a the distance between the centers. After Euler cleared the case
N = 3, Steiner reported in [3] about the cases N = 3, 4, 5, 6, 8 without proofs.
He was not aware that already in 1798 Nicolaus Fuß [1] published formulas for
N = 5, 6, 7, 8 . However, Fuß studied only a symmetric position of the polygon and
conjectured that his equations are not of the necessary generality. Of course, since
Poncelet’s Theorem we know that his assumption does not limit the generality.

Steiner’s results:

N = 3 : R2 − a2 = 2rR (L. Euler),

N = 4 : 1. (R2 − a2)2 = 2r2(R2 + a2) or
2. (R + r + a)(R + r − a)(R− r + a)(R − r − a) = r4,

N = 5 : r(R− a) = (R + a)
√

(R− r + a)(R− r − a)

+ (R + a)
√

(R− r − a) · 2R ,

N = 6 : 3(R2 − a2)4 = 4r2(R2 + a2)(R2 − a2)2 + 16r4a2R2,

N = 8 : 8r2[(R2 − a2)2 − r2(R2 + a2)] [(R2 + a2)[(r2 − a2)4 + 4r4a2R2]

− 8r2a2R2(R2 − a2)2] = [(r2 − a2)4 − 4r2a2R2]
2
.

Fuß’ results, using the notations p := R + a, q := R − a :

N = 5 : p3q3 + p2q2r(p+ q)− pqr2(p+ q)2 − r3(p+ q)(p− q)2 = 0 ,

N = 6 : 3p4q4 − 2p2q2r2(p2 + q2) = r4(p2 − q2)2,

N = 7 : [pq − r(p− q)− 2r2] · 2pqr
√

(p− r)(p+ q) + [p2q2 − r2(p2 + q2)]

·2r
√

(q − r)(p+ q) = ±[pq − r(p− q)][p2q2 + r2(p2 − q2)] ,

N = 8 : p2r
√

p2 − r2 + q2r
√

p2 − r2 = pqr2 − pq
√

(p2 − r2)(q2 − r2) .

For N = 8, there seems to be no equivalence to Steiner’s result.
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4.

We want to formulate the basic formulas of this contribution. Given are two
circles, where the circle with center C and radius R encloses the other with
center c and radius r. Let a denote the distance Cc.

Suppose that one tangent drawn from any point A ∈ C to the circle c intersects
C for a second time at A′. Similarly, we draw the tangents A′A′′, A′′A′′′ and so
on, where A′′, A′′′ · · · ∈ C and AA′A′′A′′′ . . . is a polygon inscribed in C and
circumscribed to c.

Let the common diameter cC of the two circles intersect C at P such that
CP = R and cP = R+a. If for the angles we introduce the notation <) ACP = 2ϕ,
<) A′CP = 2ϕ′, <) A′′CP = 2ϕ′′, and so on, then for two consecutive angles hold

R cos(ϕ′ − ϕ) + a cos(ϕ′ + ϕ) = r ,
R cos(ϕ′′ − ϕ′) + a cos(ϕ′′ + ϕ′) = r ,
R cos(ϕ′′′ − ϕ′′) + a cos(ϕ′′′ + ϕ′′) = r ,

. . . . . .

which can be rewritten as

(R + a) cosϕ′ cosϕ + (R− a) sinϕ′ sinϕ = r ,
(R + a) cosϕ′′ cosϕ′ + (R− a) sinϕ′′ sinϕ′ = r ,
(R + a) cosϕ′′′ cosϕ′′ + (R− a) sinϕ′′′ sinϕ′′ = r ,

. . . . . .

If we subtract from each equation the following one and pay attention to

cosx− cos y

sin y − sin x
= tan

x+ y

2
,

then follows

tan
ϕ′′ + ϕ

2
=

R − a

R + a
tanϕ′ ,

tan
ϕ′′′ + ϕ′

2
=

R − a

R + a
tanϕ′′ ,

. . . . . .

In this form, the equations remind on those with elliptic functions.
If for any given constant κ, we set

u =

∫

ϕ

0

dϕ
√

1− κ2 sin2 ϕ
,

and, as introduced by myself, the amplitude with

ϕ = am(u)
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as well as
α = am(t)

for any angle α, and
ϕ′ = am(u+ t),
ϕ′′ = am(u+ 2t),

then follows from the theory of elliptic functions

tan
ϕ+ ϕ′′

2
= ∆am(t) tanϕ′

where

∆am(t) =
√

1− κ2 sin2 α =
√

1− κ2 sin2(am(t)) .1

If κ, t and α satisfy

R− a

R + a
= ∆am(t) =

√

1− κ2 sin2 α , ϕ′ = am(u+ t),

then we obtain
ϕ = am(u),
ϕ′ = am(u+ t),
ϕ′′ = am(u+ 2t),

. . . . . .

5.

Now we want to determine α and κ. From the theory of elliptic functions follows

cosϕ cosϕ′ + sinϕ sinϕ′

√

1− κ2 sin2 α = cosα.

According to the formulas above holds

cosϕ cosϕ′ + sinϕ sinϕ′ ·
R− a

R + a
=

r

R + a
,

hence √
1− κ2 sinα2 =

R− a

R + a
and cos

r

R + a
,

consequently

κ2 =
4Ra

(R + a)2 − r2
, 1− κ2 = κ′2 =

(R− a)2 − r2

(R + a)2 − r2
.

1Translator’s comment: in todays notation holds ∆am(t) = dn t .
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Moreover,

R + a =
r

cosα
, 2R =

r(1 +∆am(t))

cosα
, r =

2R cosα

1 +∆am(t)
,

R − a =
r∆am(t)

cosα
, 2a =

r(1−∆am(t))

cosα
, a =

R(1−∆am(t))

1 +∆am(t)
.

Due to these equations, we obtain from am(u) = ϕ and am(t) = α the value
am(u+mt) by the following geometric construction: Draw the circle with center
c and radius r as well as the circle centered at C with radius R with the distance
Cc = a and

a =
r(1−∆am(t))

2 cosα
, R =

r(1 +∆am(t))

2 cosα
.

Choose point A ∈ C with <) ACP = 2ϕ and determine iteratively the points
A′, A′′, A′′′, . . . as described above. Then

<) A(m)CP

2
= ϕ(m) = am(u+mt).

For determining mt, we have to specify A = P . Of course, the sequence of angles
2ϕ, 2ϕ′, 2ϕ′′, . . . is increasing, so that the angles will exceed 360◦.

6.

It needs to be noted that the values κ and α are independent of ϕ and u. Wherever
point A is specified on C, if 1

2
<) ACP = ϕ = am(u) and point A′ satisfies

1
2
<) A′CP = ϕ′ = am(u + t), then the line AA′ will contact the circle which is

defined by

a = R
1−∆am(t)

1 +∆am(t)
and r =

2R cosα

1 +∆am(t)
.

Namely, one assumes the line CP to be fixed, and from this line, which contains
the center c, we protract the angle 2ϕ.

Similarly, wherever A is chosen, the line AA′′ will contact a circle which is
defined by

a = R
1−∆am(2t)

1 +∆am(2t)
, r =

2R cosα(2)

1 +∆am(2t)
,

where
α(2) = am(2t), ∆am(2t) =

√

1− κ2 sin2 α(2) .

And general, wherever A is chosen, the line AA(m) will contact a circle given by

a = R
1−∆am(mt)

1 +∆am(mt)
, r =

2R cosα(m)

1 +∆am(mt)
,

α(m) = am(mt), ∆am(mt) =
√

1− κ2 sin2 α(m) .
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The centers of all circles are placed on the line CP .2 Now we want prove that all
pairs of circles share the line of equal power w.r.t. the circles,3 which is orthogonal
to the common diameter. For this purpose, we look for a point on CP with equal
power w.r.t. c and C. If we denote the distance of this point to C with D, then
the distance to c is D − a, and we obtain the condition

D2 − R2 = (D − a)2 − r2

or

D =
F 2 + a2 − r2

2a
=

(R + a)2 − r2

2a
− R .

From above follows

κ2 =
4aR

(R + a)12− r2
,

hence
(R + a)2 − r2

2a
=

2R

κ2

and finally

D =
2R

κ2
− R .

We notice that D depends on κ, but not on α. However, the circles share κ and
differ only in α. Hence, if we replace c by another circle, the radical axis with
C remains the same. A direct computation of the circle which contacts AA(m)

would have been very complicated, even for small m.
Poncelet stated the existence of a circle tangent to all lines AA′′ in [2, p. 326

and Pl. XI, Fig. 93] in the following form:

“If the vertex of an angle runs along a circle C while the two sides are tangent
to another circle c, then the connection of the remaining points of intersection
between C and the sides of the angle will envelope a third circle which has the
same radical axis with the other two circles.”
A projective transformation gives rise to a theorem on conics.

7.

Up to now, we assumed that the sides of the polygon contact the same circle (or
conic). As a generalization, Poncelet weakened this condition by demanding that
the sides in given order contact given conics, provided that these conics share
with the circumscribed conic common chords, to say, two pairs of real or complex
conjugate points.4

2Translator’s comment: Jacobi wrote falsely ‘on the line AP ’.
3Translator’s comment: i.e., the radical axis
4Poncelet defined the situation that two conics share a chord — in particular in the case that

the endpoints are complex conjugate — as follows: Let the diameters respectively conjugate to
the chord intersect the conics in A,B or A′, B′ and have the lengths a or a′, and the diameters
meet at a point O of the common chord. On the other hand, let the diameters parallel to the

common chord have the lengths b or b′. Then must hold b
2

a2 OA ·OB = b
′2

a′2 OA′ ·OB′.
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Poncelet stated in [2, p. 327]:

“If a polygon is incribed a conic C such that the consecutive sides except one
contact other conics c, c′, c′′, . . . which mutually and with C share a common
chord and if this polygon varies, then the free side and all diagonals will envelope
conics which again share the common chords5 with the given ones.”

Also this generalisation can easily be concluded from our study on circles
by applying a projective transformation. Even more, we obtain formulas to the
wanted circle.

Let c, c′, c′′, . . . , c(m−1) be the centers of the circles with radii r, r′, r′′, . . . , r(m−1)

with center distances cC = a, c′C = a′, . . . , c(m−1)C = a(m−1). Moreover, we
define the angles α, α1, . . . , αm−1 by

cosα =
r

R + a
, cosα1 =

r′

R + a′
, . . . , cosαm−1 =

r(m−1)

R + a(m−1)

and set
αm = am t, α1 = am t1, . . . , αm−1 = am tm−1 .

Now we specify any A ∈ C and draw a tangent AA′ to c, A′A′′ to c′, and so on
until the tangent A(m−1)A(m) to c(m−1), where all points A′, A′′, . . . , A(m) belong
to C. We denote

<) ACP = 2ϕ, <)A′CP = 2ϕ′, . . . , <)A(m)CP = 2ϕ(m).

If ϕ = amu, then

ϕ′ := am(u+ t), ϕ′′ = am(u+ t+ t′), . . . , ϕ(m) = am(u+ t+ t′ + · · ·+ t(m−1).

If we assume t + t′ + · · · + t(m−1) = 5, then the line A(m)A, which closes the
polygon, will contact a circle given by

rm =
2R cos(am5)

1 +∆am5
and am =

R(1−∆am5)

1 +∆am5
,

where rm is the radius and am the center distance to C along the line CP . The
condition that the circles share the radical axis is equivalent to the identity of
the modulus κ.

The above represents a construction for the addition of elliptic functions.
Moreover, the formulas above reveal that the point A(m) remains the same inde-
pendent of the order in which the sides AA′, A′A′′, . . . contact the given circles.

5Translator’s comment: in other words, the conics belong to the pencil spanned by C and c.
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8.

For K with amK = π

2
holds am(u+2K) = amu+ π, and more general, for any

integer i holds am(u+2iK) = iπ+ amu . Hence, if AA′A′′ . . . A(m)A traverses the
circle C i-times, we should set more precisely 5 = 2iK−(t+t′+t′′+. . . t(m−1)). But
this does not change the formulas for am and rm. If all circles c, c

′, c′′, . . . , c(m−1), cm
coincide, then

(m+ 1)t = 2iK or t =
2iK

m+ 1
.

This is the analytic condition in terms of the radii and center distance for admit-
ting an inscribed and circumscribed (m+1)-gon which traverses the circumscribed
circle i-times.

We summarize this in the following

Theorem. Let R and r be the radii of two circles where the first is circumscribed

an n-gon and the other inscribed. If a is the distance between the centers and

cosα =
r

R + a
, κ2 =

4aR

(R + a)2 − r2
,

then
∫

α

0

dϕ
√

1− κ2 sin2 ϕ
=

i

n

∫

π

0

dϕ
√

1− κ2 sin2 ϕ
,

where i counts the surroundings of the n-gon. This equation expresses at the same

time the relation between r, R and α.

Since t = 2iK/n is independent of u, the choice of the initial vertex A plays
no role, as Poncelet stated in [2]. By the way, one can assume that gcd(i, n) = 1,
since otherwise the n-gon is multiply covered.

Thus, the problem as mentioned in the title has been solved completely and
in full generality.

9.

If the number n = 2m of vertices is even, then A and A(m), A′ and A(m+1), . . . ,
A(m−1) and A(2m−2) are opposite. Then the diagonals AA(m), A′A(m+1), A′′A(m+2),
. . . will contact a circle defined by

α =
R [1−∆am(mt)]

1 +∆am(mt)
, r =

2R cos am(mt)

1 +∆am(mt)
.

From t = 2iK/2m with an odd i followsmt = iK and am(mt) = iπ/2. Therefore,

r = 0 and α = R
1−

√
1− κ2

1 +
√
1− κ2

.

The circle shrinks to a point which remains the same for all A, since α is inde-
pendent of u and ϕ. This point is one of the zero-circles included in the family of
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circles with a common chord. On the other hand, this point belongs to all circles
which intersect the circles of the family orthogonally (according to Steiner’s re-
sult published in Crelle’s Journal 1, p. 161). In projective setting, the result on
concurrent diagonals can also be found in [2, p. 364].

It should be interesting for the theory of elliptic functions to investigate the
analogue problem for pairs of conics. The integral will appear in a more compli-
cated form, but should be reducible to a simpler form. Perhaps, I’ll return to this
problem occasionally.

April 1, 1828
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