ON CAYLEY'S EXPLICIT SOLUTION TO PONCELET'S PORISM !

by Phillip GriFiTHs * and Joseph Harris ®

Let C and D be two smooth conics generally situated in the projective
plane. The classical problem of Poncelet is to determine if there is a closed
polygon inscribed in C and circumscribed about 2. His beautiful result is
that there is one such if, and only if, there are infinitely many. More pre-
cisely, il we let x denote a point of € and £ a tangent line to D, and if we
make the construction

(x, &) = (x",§) = (x", ")

as depicted by Figure |

Figure 1

then Poncelet’s theorem states : The requirement that the n™ iterate of this
construction give us back (x, £y is independent of the initial data.
Following Poncelet’s original synthetic proof, Jacobi gave in 1835 an

analytic argument based on (to us) elaborate formulae from the theory of
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elliptic functions. In a recent paper ') we gave a “modern™ algebro-geo-
metric version of Jacobi’s proof together with an extension of the Poncelet
theorem to 3-space. In that paper we stated that it seemed (to us) difficult
to find the explicit conditions for Poncelet’s porism ?) to hold. In the interim
Marcel Berger called to our attention a series of papers by Cayley ) op
exactly this question. Cayley’s method was again based on complicated
identities from elliptic functions, but his final result was quite simple. So
in:this paper we shall give an algebro-geometric proof of Cayley’s theorem,
one which yields a rather elegant explicit formula that a point on an elliptic
curve be of finite order n (c.f. the end of §1 below). When applied to the
Poncelet problem the result is this:

Let C(x) = 0, D(x) = 0 be the quadratic equations in x = [x, x,, _\-l]l

which define C, D respectively, and consider the expansion
Jdet(t C+D) = Ag + Ayt + Ast? + ...

of the square root of the determinant of the quadratic form ¢ C(x) + D (x).
Then the Poncelet construction yields a finite polygon of n sides (with arbi-
trary starting data) if, and only if,

! Az Am+l
: | = 0 n=2m+1, or
| . ;
A‘m S LT A 2m
-"[3 -’1m4—1
=10 n = 2m.
Apsr oo Aoy

It is our pleasure to thank Marcel Berger for pointing out to us the
Cayley references, which he found discussed extensively in the book “Les
Coniques™ by Henri Lebesgue.

'} A Poncelet Theorem in Space, to appear in Comment, Math. Helvitici.

) This word appears in the classical literature on the Poncelet theorem. According
to the Random House Dictionary, a porism is “a proposition affirming the possibility of
finding such conditions as will render a certain problem indeterminate, or capable of
innumerable solutions*,

¥} The references to Cayley are given in a footnote to our paper b).
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1. POINTS OF FINITE ORDER ON ELLIPTIC CURVES

Let £ be an elliptic curve over the complex numbers with origin o. In
practice £ will have various realizations as an algebraic curve defined by
polynomial equations in projective space; e.g., as a plane cubic, the inter-
section of two quadrics in P, etc. All of these projective models are bira-
tionally isomorphic to the given curve E. It is well known that £ admits a
commutative group law with o being the identity, and we are interested in
the points p of finite order » defined by )

np =20

where np = p + ... + p (n times). Specifically, we pose the question of
finding a projective model of E relative to which these points have a simple
explicit description.
From a complex-analytic point of view we may realize £ as the Riemann
surface
E=C/4a

obtained by factoring the complex u-plane by a lattice A with # = 0 projec-
ting onto the origin o; this is a consequence of Abel’s theorem ). The
group law on E is obtained from the additive structure on C, and so if
u, € C projects onto p e E the finite order condition is

(1) niy = 0 module A .

In particular there are #* points of finite order » on E corresponding to the

points of
1
—A.
n
Our problem may be generalized to that of giving projective meaning to
the equation

(2) Uy + ... +u, = 0Omodulo A,
which specializes to (1) when the u; tend together. Here again the basic step

is the following variant of Abel’s theorem ®) : Given wu,v;e C(i=1, ..., n)

') This is the classical version of Abel’s theorem used in 1.
‘) C.I. L. Ahlfors, Complex Analysis, McGraw-Hill (New York), Exercise 2 on
page 267. This may be thought of as providing a converse to the classical Abel's theorem.
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there is an entire meromorphic function f(u) with period lattice A ang

A if, and only if,

having zeroes at u; + A and poles at v; +

Uy + oo + 11, =0, + ... + v, modulo 4.

It follows that the vector space #° (@ ([#0])) of rational functions on g
having a pole of order at most x at o, or equivalently the entire meromorphic
functions f (u) which have period lattice 4 and a pole of order at most » at
u = 0, has dimension n. If we choose a basis f}, ..., f, for this vector space,
then for n = 3 the mapping

Fu) = [fi(u)y .o fy ()]

induces a projective embedding
E " Par-- 1

whose image is easily proved to be a smooth algebraic curve of degree n,
Thus, for # = 3 we have a plane cubic, for n = 4 the intersection of two
guadrics in P, etc. In general we shall call the image the normal elliptic
curve of degree n. According to Abel’s theorem the hyperplane sections of
this curve, which are just the zeroes of functions fe H (€ ([no])), are
characterized by u, + ... + u, = 0 modulo 4, Put differently, the condition
(2) is equivalent to

(3) det|[fi(up) | =0

expressing the failure of the points F (i), ..., F (1,) to be in general position,
If we denote by

vee fulw)
S alu)

i (u)
fll(“)
WF{u) =

f‘ll"_ U(“) et fn(u_j }(”)
the Wronskian of the functions f; (¢}, then by letting the u; tend together the
condition (3) specializes to the equation
(4) WF @) =0

characterizing the solutions to (1). Points satisfying (4) will be called fiyper-
flexes, and what we have shown is that:

il

i
Ln

The points of order n on an elliptic curve are precisely the hyperflexes of
the normal elliptic curve of degree n.

Now we observe that the equation (4) is independent of the selection of
basis {/;} and local coordinate # on E. To see therefore whether or not a
given point p is of finite order » we will make convenient choices. Namely,
we may choose a basis { 1, f(u)} for H® (¢ ([20])) such that f(p) = 0.
In other words, the function f induces a 2-to-1 map

(5 JiE - P!

with pef " (0). It is well-known that the representation (5) has four
pranch points, one of which is the point at infinity with /% (20) = o,
If we let x be the coordinate on P! and q, b, ¢ the finite branch points, then
E is conformally represented as the Riemann surface of the algebraic func-

tion \ (x—a)(x—b) (x—¢).
Put another way, the plane cubic curve with affine equation

(©) ¥ = (x—a)(x~b) (x )

gives a projective model of E. Setting x = f(u), since the holomorphic
differential i is a constant multiple of dx/y it follows that, with a suitable

T 1
normalization, 2y = ' (u) = ‘—fi&)
an

(6) of E is given by the mapping E - P? associated to the basis
{Lf@), /" ()} of H* (0 ([30])). Of course, £ (1) and f” (i) are essentially
the Weierstrass functions. We recall that that their Laurent series around
u = () are

Consequently the projective model

1
fu) = = E

-

f =
S "

—D¥k+1)!
yow = S,

u

Returning to our question of whether pef ™' (0) is of finite order n,
we will use x = f(u) as local coordinate around p and choose the functions




[l X PeXP e Xm0 no=2m+l1
{8) m
l byo0yivy a8y WPy vy y n=2m
as basis for H" (0, ([#0])). That this choice gives a basis follows from the
Laurent series (7). It is now an easy matter to express the Wronskian equa-
tion (4) at x = 0.
- ; . dg (x) : o
We consider the case n = 2m + | and let - be the derivative of
dx

g (x) evaluated at x = 0. The choice of basis (8) facilitates the evaluation
d* (xh

of the Wronskian, For example, from ey = ( for k > [ the Wronskian
ax

has the form

0 ... m! T

d
|

If the series expansion of y (x) is

=)

yix) = Z :1,;.\"".
K=o

then (9) s

[ (m+D! A, (m+1)! A4, om0 A,

(m4+2D! Ay (MDA, o (m+2)14 5

| (2m)! A, (2m)! A;p_y .. 2m)! Ay

In summary we have proved

(10) Ler E be an elliptic curve with origin v and pek a given point.
Then p is of finite order n <> the following condition is satisfied :
Choose rational functions x,y on [E having poles of respective orders
2,3 at o but which are regular elsewhere and with x(p) = 0. Then
there is an equation y* = (x—a)(x—b){x—¢c) where a,b,c are
distinct and non-zero, and we write

x

po= \__.-'f(x—c:]{x—b)('x—:-J = Z A

so that (4) is equivalent to

damt l)_. dm--] {X‘I.-'} dm-|- 1 (_\Im 5 1'11."
dxm 1 a_\.’m+l £ dx™* o
dmt '.‘.}, dam +2 ('.\:_'I.'} dm +2 ('xm— IJ-‘) |
Jxm-* 2 d_\:m-i-z {F.\,"H-Z

(9) _ _ =
(!u!ruj. al_’m {_x_'l') J,!m {xm - 1}‘}
CI.\'L“ li.\'zm dem

k=0
The finite order condition is
Ay A, Aty
Ay Ay Apsa |
=0, n=2m+1
'49(-— 1 "'I.':r-‘ RS Alm
4, A, . L) |
A, Az o ALy
|
| =0, pi=12n,

Am!l "lm-rl Alm




2. APPLICATION TO THE PONCELET PROBLEM

We consider two smooth conics C and D meeting transversely at four
points x; (i=0, 1, 2, 3) of the projective plane P?. The dual conic p*

< P** consists of the tangent lines & to D, and we counsider the incidence
correspondence

E c CxD*
of pairs p = (x, &) with x & £ (c.I. Figure 1 above). £ is the basic algebraic

curve underlying the Poncelet construction, and we shall now examine it,
Referring again to Figure 1, there are on £ a pair of involutions defined
by
[ i(x8 = (¢

1 ix, &) = (¢, &)

whose composition j = /" © i is given by j (x, &) = (¥, &). It follows that
Poncelet’s construction beginning at p = (x, &) gives a closed polygon of n
sides if, and only if,

i"(p) = p.
The mapping

(x,8) = x

represents £ — C as a two-sheeted branched covering whose branch points
are just the points x;€ C n D (i=0, 1, 2, 3), and the involution §' inter-
changes the sheets of this mapping (c.f. Figure 2 below). Similarly, / inter-
changes the two sheets of the mapping £ — D* given by (x, £) — & whose
branch points are the four bitangents to the pair of conics. It follows that
if we choose the origin to be 0 = (x,, &,) in Figure 2 below

Figure 2

then E is an elliptic curve; i.e. a smooth algebraic curve of genus one with a
marked point chosen as the identity for the group law. If we let p = (x, &)
in Figure 2, then the Poncelet theorem is:

The Poncelet constriection gives a closed polygon of n sides with arbitrary

initial data g = (x, &) e E if, and only if,
(11) np = o
on the elliptic curve E.
Proof. We want to show that (11) is equivalent to
J"(@) =4

for an arbitrary point ¢ € £. On the universal covering C of £ any involution
i; having at least one fixed point lifts to

;1 (u) = — u + v modulo 4,
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and /; (0) = o is equivalent to v e A. It follows that

ifu) = —u — wmodulo A

i'(u) —u modulo A,

so that

J{u) =u + w modulo 4,
and consequently
J"(q) = g == nw =0 modulo A.

Taking p to be the image of w in £ = C/A, we have
p=jlo) =(x,%

in Figure 2, which proves our assertion. Q.E.D.
To complete our story we want to combine this result with the explicit
formula (10). As in the introduction we consider the pencil of conics

D, = {tC(x)+D(x) =0}

passing .through the four base points x. The determinant det (¢t C(x)
+ D(x)) is a cubic polynomial in 7 with non-zero roots ¢, (i= 1,2,3)_
For ¢ # ; we draw the tangent line to D, through x, meeting C in a unique
residual point x (7). It is easy 1o see that 1 = ¢, is mapped into x, (with
suitable indexing), and since D, = C the value / = oo is mapped to x,.
Taking r = 0 we see that ¢t = 0 corresponds to x, so that in summary:

The elliptic curve E s birationally equivalent to the Riemann surface ‘of
the algebraic function \,.-"’_det (tC(x)+D (.\‘)3 with the origin v corresponding
to IO= o and the point p = (X, $) to one of the two points lying over
=0

Combining this with (10) gives Cayley’s result stated in the introduction.

( Regu le 27 juin 1977)
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A COINCIDENCE-FIXED-POINT INDEX !

by Albrecht DoLb

B. Eckmann anldsslich seines 60. Geburistages gewidmer

INTRODUCTION

The fixed point set of a map ¢: X — X is, generically, a discrete set;
if it is compact its (weighted) cardinality is measured by the Hopf-index
() € Z. The coincidence set K of a pair of maps (@, p): X 2 Y is not
discrete: its generic dimension is dim K = dim X — dim Y. If K is compact
it can sometimes (compare 3.8) be measured by a cohomology invariant «,
but even then i is difficult to deal with. This might explain why most
studies on coincidence questions make additional assumptions on (@, p),
or use auxiliary data. For instance, if one of the maps, say p, admits a
section of sorts o then the fixed points of gg are in K so that fixed point
methods give coincidence results. Usually o is not a genuine section; for
instance, if’ p is a Vietoris map then one uses (p*)~ ', on the cohomology
level {cf. 3.7).

The idea of the present lecture is to let fixed point transfers in the sense
of [2] play the role of ¢; we have to assume, therefore, that p is ENRy
which means (roughly speaking: cf. [2]) that p has sufficiently many local
sections. Actually, our procedure for counting fixed points of ¢ (cf. §1)
is much more elementary than [2] and doesn’t really use transfers. Only
when we express the number of fixed points of @¢ as a Lefschetz trace in
theorem 2.1, transfers ¢ become essential. If one imposes further (rather
restrictive) assumptions on p then ¢ can be eliminated again (from the
theorem: it is still used in the proof), as shown in prop. 3.5. — The last
section of the paper discusses applications (3.1-3.6) and problems (3.7, 3.5).

!y Presented at the Colloguium on Topology and Algebra, April 1977, Zurich.




