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0 Introduction 

A Poncelet-polygon is a polygon in the projective plane IP 2 = ]P2([~) (the base field 
always is C) with its vertices on one smooth  conic D ~ lP 2 while its sides touch 
another  smooth  conic C. If the polygon happens to be a n-gon, we call the conic 
C n-inscribed into D, and D n-circumscribed about C. If  m divides n, we do not 
consider a m-gon a special kind of  n-gon. The aim of  this note is to compute  the 
following numbers: 

�9 The number  of  conics D in a general pencil C~x:,), which are n-inscribed into 
a fixed conic C of this pencil, 

�9 the number  of conics D in a general pencil, which are n-circumscribed about  
a fixed conic C of this pencil, 

�9 the number  of projective equivalence classes of pairs C, D of conics (in 
general position, i.e. meeting in four distinct points) such that C is n-inscribed 
into D and O is m-circumscribed about  C. 

To formulate our  results, we need the number  

t(n) := the number  of primitive n-torsion points on an elliptic cu rve .  

Here we mean by a "primitive" n-torsion point  some point, which is not torsion of  
any order  smaller than n. Clearly the function t(n) is multiplicative in the sense of  

* Parts of the results and the essential techniques of this note are taken from the Erlangen thesis 
(1991) of the second author. They were circulated as Nr. 122 of Schriftenreihe Komplexe 
Mannigfaltigkeiten. Our research was supported by DFG grant Ba 423/3-3 and the European 
Science Project "Geometry of Algebraic Varieties" SCI-0398-C(A) 
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number theory. So if n = p ~ . . . .  

For  example 

�9 p~r is the prime factor decomposition of n then 

t ( n )  = ( p ~  - 1)p~ ~ ' - ~ .  . . . . ( p ~  - 1 ) p ~ - ~ .  

; n  2 - I  if n = p  is an odd prime 
t(n) 

n z 4 if n = 2p with p an odd prime . 

Unless n = 2, the number t(n) is divisible by four. We abbreviate 

c(n) = �88 t (n) .  

Our results are 

Theorems 1 and 2. Each conic C(z:u ) = 2C + #D in a 9eneric pencil (this means 
C and D intersect in four distinct points) is n-inscribed into c(n) conics in this pencil, 
and n-circumscribed about twice that number of conics in the pencil. 

Of course, this number includes certain multiplicities, but for a general conic 
C in the pencil the multiplicities are one. 

Theorem 3. Each smooth conic C in the plane IP 2 is (up to projective equivalence) 
simultaneously n-inscribed and m-circumscribed about 

{2< i f m = n = 3  

�89 if m or n > 3  

conics D (meetin9 C in four distinct points), counted up to projective equivalence. 

This number again contains multiplicities, but unfortunately here we cannot 
control them. 

The proof of these facts consists of relating them to plane projective models of 
certain modular  curves: It  is well-known that the Poncelet-property depends on 
a torsion element in the elliptic curve, which is a double cover of C, branched over 
the four points of intersection of C with D, cf. [-GH]. We only put one parameter  
into this situation and study torsion sections on rational elliptic surfaces, which are 
double covers of the plane. The image of the n-torsion curve on this surface is 
a curve /7 ,~F2,  which is the birational image of the modular curve Xo,o(n, 2) 
parametrizing isomorphism classes of 

�9 elliptic curves with a level-2 structure 
�9 and a primitive torsion-point of order n on this curve. 

It is easy to see that 

degree (/7,) = c(n) . 

The numbers mentioned are 

�9 the intersection number o f / I ,  with a line, 
�9 the intersection number o f /7 ,  with a conic, 
�9 the intersection number of /7 , ,  w i t h / / * ,  the image o f / 7 ,  under a certain 

Cremona transform, which therefore is a curve of degree 2.c(n). This 
intersection number is divided by six, because of projectively equivalent 
situations. 
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1 nT~eelliptic surface 

We fix a general pencil Cta:u) of conics in the plane IP 2. Here "general" means that 
the pencil has four base points. We call these base points Po, P1, P2, P3. They are 
in general position, so we can choose homogeneous coordinates (Xo, xl ,  Xz) on ]I)2 
such that 

P o = ( l : l : l ) ,  P 1 = ( - 1 : 1 : 1 ) ,  P 2 = ( l : - l : l ) ,  P 3 = ( l : l : - l ) .  

The pencil then consists of all conics 

,~x 2 + ~x~  - (;. + / ~ ) x  2, , ~ : ~ e l e l .  

All these conics are smooth but for the three values 

( ~ : ~ )  = ( l : 0 ) , ( 0 : 1 ) , ( 1  : - 1 ) ,  

for which the conic Ct~:,~ splits into a pair Lk,L'k,k = 1, 2,3, of lines. We denote by 
Lk the line in this pair containing Po. 

Each conic in the pencil is invariant under the group 

~IP2 "+ ]P2 
712X7~2 ~(Xo:XI:X2)I__+(_[_X.o:..I_X1 -[- X2) . 

We denote by Eta:u) the double cover of the conic C~a:,) branched over the four 
points Po, P , ,  P2, P3 6 Cta:,}. If Cta:u) is nondegenerate, then Et,:u ) is a smooth 
elliptic curve. We distinguish the point over Po as origin on Eta:u). Then the three 
points over P, ,  P2, P3 are the three non-trivial half-periods on Eta:u> The chosen 
ordering Po, P~, P2 of these three points defines an ordering of the three non-trivial 
half-periods on Et,:u), i.e. a level-2 structure on the elliptic curve Eta:u). 

(1.1) Given an elliptic curve E with a level-2 structure there is a unique curve 
Eta:u} and an isomorphism E ~ Eta:u ) compatible with level-2 structures. In this way 
we 9et an identification of  the parameter curve IP I (2 :/~) of our pencil with the modular 
curve X2, which parametrizes elliptic curves with level-2 structure. 

Proof We represent E as a double cover of some IP 1 with four branch points 
Co, el,  e2, e3~]P1, the point over the branch point eo being the origin on E. We 
assume that the three other branch points are ordered in the way of the level-2 
structure and denote the cross-ratio [eo, e,,  e2, e3] by ~. 

The cross-ratio [Po,PI,P2,  P3]c .... of the four points P o , . . .  ,Pa on a conic 
Cta:,) is computed as follows: Choose an auxiliary line L c ~2, e.g. the line Xo = 0. 
Project the three points P, ,  P2,P3 from Po into this line to obtain the points 
(0:1 : 1), (0:1:0), and (0:0:  1), The tangent Teo(Ct~:,)) of the conic Cta:u I at the 
point Po is the line 2Xo + #xl - (2 +/a)x2 = 0. It meets the line L in the point 
(0:2 +/t:/~). So we find 

[Po, P~, P2, P3]c .... = [(1: 1), (1:0), (0: 1), ( p : -  2)]~, 

2 

# 
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2 
For - = e, and only for this value of(2: p), there is an isomorphism ~'1 ~ C(~:.) 

/2 
sending ek to Pk, k = 0 . . . . .  3. It  induces an isomorphism E --, Eta:u), uniquely up 
to the covering involution. [] 

Our next aim is to combine all the elliptic curves E(x:u ) into one elliptic surface. 
As there is no universal elliptic curve with level-2 structure, this is possible only 
with a slight modification: 

We fix one smooth conic C in our pencil C(z:,). We denote by 7 : IP1 x ]P1 ~ ]P2 

the double cover with branch locus C. Then 7-1(C(x:,)) is isomorphic with the 
elliptic curve E(x:,) for all conics C(a:u) 4: C. 

We denote by a @2 --* IP2 the blowing-up of the four base points Po . . . . .  P3 
with Ek = a -~  Pk c IP2 theexceptional  curve over Pk, k = 0 . . . . .  3. 

The pull-back ~ : y - o  IP2 of ~, to lP2 is a double cover branched over 
(~ + Eo + �9 �9 �9 + E3, the total transform of C under ~. The surface Y has four 
ordinary double points over the four intersections C c~ Ek, k = 0 , . . . ,  3. We de- 
note by z~:X---, Y the minimal desingularization of this surface. So we have the 
following diagram of maps: 

X ~ ~ Y ~ *  ]Pix~i 

1i'2 ~ , ~ ' 2  �9 

The pencil C(x:.) lifts t o  ~32 as a basepoint-free pencil of conics and to the 
rational surface X as an elliptic fibration. We denote by F~x:u) c X the fibre in this 
fibration over the curve C(z:.). These fibres are 

�9 smooth elliptic isomorphic with E~: . ) ,  if C(~:.)is smooth and different from 
the fixed conic C, 

�9 of Kodaira-type I* =/~4 if C(~:.) = C (the central component  in this fibre 
lies over C while the four other components Co . . . . .  C3 are the ( -  2)-curves 
resolving the double points of Y), 

�9 of Kodaira-type I 2 if C(z:.) is one of the three degenerate conics Lk + L~ in 
the pencil. (We denote these fibres by Dk + D;, with Dk the curve over Lk.) 

The elliptic fibration F(a:.) of X admits four sections So . . . . .  $3 lying over the 
four exceptional curves Eo . . . . .  Ea c Pz.  The images in 11' 2 of these sections are 
the four base points Po . . . . .  Pa. The section So cuts out on each smooth fibre 
F(~:~) the point over Po, which we view as origin on the elliptic curve F(~:,). So So 
is the zero-section. The other three sections $1, $2, $3 meet the smooth fibres 
F(z:u I in the other three branch points of the covering F(~:,) --* C(a:u). So these are 
two-torsion sections. 

Translation by two-torsion sections defines a group action of Z2 x Z2 on the 
surface X. This covers the Z2 x Z2-action on IP2 described above, which leaves 
each conic in the pencil invariant. 

A final remark: The surface X and its elliptic fibration depend on the chosen 
conic C. This dependance is unwanted, but inevitable. Fortunately everything 
interesting for us in the sequel will be independent of this choice. 
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2 The n-torsion curve A. 

Having specified a zero-section So for the elliptic fibration on X we can talk about  
the points of order n on each smooth fibre F(x:,). On X there is a closed algebraic 
curve T, for each n e N, defined by two properties: 

�9 on each smooth fibre T, cuts out the n 2 points of order n, 
�9 T, does not contain any fibre components. 

The curve T, contains the zero-section So, and for n even it contains $1, $2, $3 too�9 
These two-torsion sections Si do not meet other components of T, on smooth fibres 
F(x:,), nor  in smooth points of singular fibres (since these smooth points form 
a one-dimensional Lie group [Ko, Theorem 9.l]). As the sections Si do not pass 
through singularities of fibres, they form connected components of the curve T,. 
We define 

(:odd 
A,:= T , \ ( S o w .  k_)S3) for �9 even . 

The aim of this section is to describe the curve d, .  

(2.1) The curve d ,  meets the I*-f ibre over C only on its (nonreduced) central curve, 
and not on the curves Ci, i = 0 . . . . .  3. 

Proo f  We use stable reduction [BPV, III. 10]. A neighbourhood of the IJ-f ibre can 
be represented as the quotient of a smooth fibration by an involution, with 
Co . . . . .  C3 the images of the four fixed points of this involution blown up. These 
fixed points are just the two-torsion points on the central fibre of the stable 
reduction. Near the /*-fibre, the curve A, is the image of the curve of n-torsion 
points A', on the stable reduction, the two-torsion sections being removed. Now 
A', does not meet the central fibre of the stable reduction in points of order two, and 
its image A, c Y does not meet the blow ups Co . . . . .  C3. [] 

It remains to describe A, near the three singular fibres Fk = Dk + D'k of type I2. 
Recall that Dk c Fk is the component  met by the zero-section So. 

(2.2) Near each o f  the two double points o f  Fk the n-torsion curve A,  decomposes 

locallyinto[~21]componentsA~J),j= l . . . . .  [2],(notnecessarilyirredu- 
cible ones) o f  multiplicity min {2j, n - 2j}. The intersection numbers of  A(, j) with Dk 
and D'k are 

(A(. j). Dk) = n -- 2j, (A(, j)" D'k) = 2j  . 

Proo f  By [Ko, Theorem 9.1], the smooth points on Fk form a group Fff ~ (E* 
x Z 2. Its connected component of the origin belongs to Dk and contains a cyclic 

subgroup 7l,. This group 7/. extends to a group of sections in a neighborhood U of 
Fk, cf. [BPV, V.9]. We form the quotient 

q : U  ~ Q  

by the action of this group. The two singularities of F~ go to two quotient 
singularities of type A._ 1, D, goes n-to-one onto a rational curve E and D;, goes 
n-to-one onto another rational curve E' meeting E in the two singularities�9 
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Next we resolve the two A, 1-singularities of Q by inserting a string of n - 1 
rational curves over each of them: 

r : R  ~ Q .  

In R we have a cycle of 2n rational curves. We call them Eo . . . . .  Ezn-  1, numbered 
in such a way that  E is the image of Eo, E'  is the image of E,, and El meets Ei+ 1, 
with subscripts read modulo  2n. The elliptic fibration induces an elliptic fibration 
on R such that u Ei is a fibre of  Kodaira- type I2,. Near  this fibre, the n-torsion 
curve of  R breaks up into a group of sections isomorphic with Z,  x 7 / .  

The curve A, c~ U is mapped n-to-one onto a curve Q, c Q and Q, is trans- 
formed birationally into a curve R, ~ R. 

A, , Q , =  uQ,(~) , R , =  w R ,  (j) 

(3 N 
U q :, Q r R 

U U U 
Dk, D'k ' E, E'  , Eo, E,  

This curve R,  meets the smooth  fibres of  R in a group 77 of points of order n. As 
the n-torsion curve on R breaks up into sections, so does R,. Only the zero-section 
in R, will meet Eo. This implies that R,  = w R~,J),j = 0 . . . . .  n -  1, with the 
section R,  (j) meeting precisely the c u r v e  E z j  among  all E/s .  The curve R~, ~ maps 
into Q as a section Q~O) through E, which is the image of all the n sections in T, 
meeting Dk. If n is even, the curve R(f/2) similarly maps into Q as a section meeting 
E'. The sections R~. j) for 0 < 2j < n map into Q as curves through one singularity, 
and for 2j > n to curves through the other  singularity. 

Without  restriction we now assume 0 < 2j < n and denote by A~ J) c U the 
pullback q - l ( Q ( j ) )  to u of the curve R,  (j). 

As the singularities on Q are rational, on a sufficiently small ne ighbourhood 

V c R of  U~---~ Ej the divisors of meromorphic  functions are precisely those 
divisors which have intersection number  0 with each E j , j  = 1 . . . . .  n - 1 ,  
cf. [BPV, III.3]. These functions descend to functions on Q and pull back to 
meromorphic  functions on U. 

Such principal divisors on R are in particular 

2 j -  1 

G ( j ) = R .  ( j ) -  ~ ( 2 j - k )  Ek, G ' ( ; ) = R ~  j ) -  ( k - 2 j ) E k  
k=0 k = 2 j + l  

and there are meromorphic  functions 9 (;), 9 '(;) on V with these divisors. They 
descend to Q and pull back to functions h (j), h '(;) on U, both meromorphic  near 
one of the two singularities of Fk. Locally their divisors are 

(h (j)) = A(, j ) -  2 j .  Dk, (h '(j)) = A(, ~ ) -  (n - 2j). D;,. 

This shows that the local intersection numbers  are 

(A~J).Dk) = (n - 2 j ) (D; , .Dk)  = n -- 2j, (A(,J).D~) = 2 j (Dk .D~)  = 2 j .  

Near this point  Dk c~ D~ we now linearize the action of 77,. I.e., we choose local 
coordinates x, y such that  locally 

D k : y = O ,  D'R:X = O  
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and such that  the group action is 

(x, y) ~ (cox, co- 1 y), co = e :~i/" . 

Then h (j) is invariant  under  this action. The function f (J)  := y2j .  h(j) is a local 
ho lomorphic  equat ion for A (J) satisfying 

f(cox,  co-Xy) = co- 2Jf (x, y) . 

Its Tay lo r  expansion 

.f(x, y) = Y~ am,~, xmy~' 
m , m ' -  1 

therefore contains nonzero coefficients am, re' only for 

m - m ' -  - 2 j  ( m o d n ) .  

The monomia l s  of lowest order possible are 

x n-2j and y 2 j  . 

Since we know the intersection numbers  (A(,J).Dk)= n -  2j and (A(,J).D'k)= 2j, 
both  these monomia l s  in the Taylor  expansion have nonzero  coefficients. So the 
multiplicity of A (j) at this point Dk ~ O'k is min { 2j, n -- 2j}. [] 

Adding over all components A(, j), 0 < 2j < n, we find the intersection multiplicities 
o f  A, with Dk and D;, in each of  the two double points p Of Fk : For odd n 

( n -  1) 2 
( A , . D k ) p =  1 + 3 + " .  + ( n - 2 ) =  4 ' 

n 2 - - 1  
(An.D~,)p = 2 + 4 + . . .  + ( n -  1) = 4 

and for  even n 

(A, .Dk)p = (A,.D'k)p = 2 + 4 + " + (n - 2) - 
n 2 - 2n 

4 

Together  with the intersection multiplicities in the smooth  points of  Fi one obtains  
the intersection numbers:  

(A,.  Ok) = 2 (n -- 1) 2 
4 

1 - - + n - 1  =~(n2-  1), 

- -  1 l 2 
( A , . D R ) =  2 n z4  = ~(n  - 1) ( nodd )  

and 

2 n 2  - 2n 1 2 
(A , .Dk)  = ( A , . D ' k ) =  ~ - -  + n - -  Z =  ~(n - -4 )  ( n e v e n ) .  
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3 The modular curve Xoo(n, 2) 

The following notations for modular curves seem to be standard [-DR, p. 221]: 

Modular curve 

X(n) 
Xo(n) 
Xoo(n) 

Parametrizing elliptic curves Group (: 
With level-n structure 
With cyclic subgroup of order n 
With proper n-torsion point 

r(n) 
Fo(n) 
Foo(n) 

a - d -  1, b-c=-O(n) 
c - O(n) 
a-- d -  l,c =_ O(n) 

Here X is the compactification of :/f/F. 
For n > 2 we are interested in the modular curve parametrizin9 elliptic cur- 

ves with 

a primitive n-torsion element and 
- a level-2 structure. 

This curve is the fibre product of Xoo(n) and X(2) with respect to the j-function 
map onto the projective line. We call it 

Xoo(n, 2):=Xoo(n) x ~ X ( 2 ) .  

(3.1) l f  n is odd, then Xoo(n, 2) is connected, l f  n is even, then Xoo(n, 2) decomposes 
into three connected components, which are isomorphic double covers of Xoo(n). 

Proof (a) n odd: A level-n structure on an elliptic curve E is a symplectic isomor- 
phism of 2g, • •, onto the n-torsion subgroup of E. The image e ~ E of (1, 0) under 
this isomorphism is a primitive element of order n. Each primitive n-torsion point 
e ~ E  belongs in this way to (n different) level structures. Associating the level 
structure with e defines a surjective map X(n) ~ Xoo(n). This induces a surjective 
map of X(n)  x ~1X(2) onto Xoo(n, 2), and it suffices to show that the fibre product 
X(n) x ~, X(2) is connected. 

For odd n the 2n-torsion subgroup E 2n of E is a direct product of E" and E 2, in 
a way compatible with the symplectic forms on these groups. So a level-2n structure 
on E is exactly the same as a level-n structure plus a level-2 structure. This shows 
that there is an isomorphism of X(n) • ~, X(2) with the connected modular curve 
X(2n). 

(b) n even: The choice of an element v of order n distinguishes one element ~,/2 
of order 2. Sending T ~ z,/2 defines a map Xoo(n) ~ Xoo(2). This induces a surjec- 
tive map 

Xoo(n, 2 ) = X o o ( n )  x m~X(2)--*Xoo(2) x ~ X ( 2 ) .  

There are three different maps o v e r  IP 1 of X(2) onto Xoo(2). The fibre product 
Xoo(2) x ~1X(2) therefore decomposes into three copies of X(2). Then our curve 
Xoo(n, 2) decomposes into three curves, which are isomorphic double covers 

Xoo(n) x Xoo(2)X(2) 

of Xoo(n). 
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tl 
Multiplication by ~ defines a canonical map X(n) ~ X(2). Combining it with 

X ( n ) ~ X o o ( n )  we get a map of X(n) onto a connected component of the 
fibre product Xoo(n)x Xool21X(2). There are n distinct level-n structures mapping 
on the same primitive n-torsion point e e E .  One half of them defines another 
level-2 structure on E as the other half. This implies that the connected 
component  mentioned has degree two over Xoo(n). So the double cover 
Xoo(n) x Xoo(2)X(2) ~ Xoo(n) is connected. The curve Xoo(n) therefore consists of 
three connected components. [] 

(3.2) For an odd prime p 

genus(Xoo(P, 2)) = �88 - 3) 2 . 

Proof The maps j :  X(2) --+ IP1 and j :  Xoo(P) ~ IP1 are of degree six and (p - 1)2/2. 
Their branching patterns are: 

X *' 
X X  Z 

j: ' ' I j: I I , j: I 
0 1728 cc 0 1728 cc 0 

X(2) Xoo(3) 

1728 oo 

Xoo(p), p > 3 

Over the points 0 and 1728 this follows by counting fixed points for the automor-  
phisms of these curves among all primitive n-torsion points. Over ~ this can be 
deduced from [BPV, p. 155]: Locally near ~ there exists a universal family of 
elliptic curves. The j-function has a simple pole, so the singular fibre here is rational 
with a node. Near  ~ the period lattice is of the form 

1 
)7 • Z .~-_ ln(z) .  

The monodromy on n-torsion points can here be traced easily. We can write the 
lattice points in a fibre as (a, b) such that this monodromy is (a, b) ~ (a + b, b). 

Using the rules 

X 
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we find the branching pat tern  for Xoo(P, 2): 

p2 _ I~ 

J: I 

3{/,~-1) ~ } 2 p  

0 1728 ~z 

Using the genus formula  for this branching pat tern we compute  

2 9 -  2 = - 2 . 3 (p  2 - 1) + (p2 _ 1).2 +-~(p2 _ 1) + - ~ ( p -  1 ) . ( 2 p -  1) + ~ ( p -  1) 

= - - 2 5 ( p  2 - -  1) + 3 . p . ( p  --  1) 

= � 8 9  _ 6p  + 5) 

9 = �88 _ 6p + 9) 

= � 8 8  - 3 ) 2 .  

In principle it is not  difficult to compute  in this way the genus of Xoo(n ,  2) for 
arbi t rary  n. The p rob lem is, that  the pr ime decomposi t ion  of n makes  the branching 
pat tern over ov somewhat  complicated.  So we only consider two examples,  n = 8 
and n = 12. 

The case  n = 8. The degree of the covering Xoo(8, 2) ~ IP1 is 

�89 = � 89  = 24 .  

Over 0 there lie eight triple points, and twelve double points  over 1728. We write 
the primitive 8-torsion points as pairs (a, b)e  7Z 2 with gcd(a, b, 8) = 1 such that  the 
m o n o d r o m y  acts by (a, b) ~-~ (a + b, b). Under  m o n o d r o m y  they form the follow- 
ing orbits  (in brackets):  

a 

1,3,5,7 
(0,1, 2, 3, 4, 5, 6, 7) 
(1,3, 5,7) 
(0,1,2,3,4,5,6,7) 
(1, 5), (3, 7) 

After quot ient ing out by the involut ion we obtain  the following orbits 

Number: ] 2 1 1 2 

Length: 1 1 2 4 8 

and the covering has the following branch  points: 

j ~ 0 1728 ov 
Number: 48 72 12 6 12 
Order: 3 2 2 4 8 
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This implies for the genus of the total  curve 

2 9 - 2 =  - - 2 - 1 4 4 + 4 8 . 2 + 7 2 +  1 2 + 6 . 3 +  12 .7  

= 6 . ( - 4 8 +  1 6 +  1 2 +  2 + 3 +  14) 

= -- 6 .  

So the three components  of X0o(8, 2) are rational. 

The case n = 12. The degree of the covering Xoo(12, 2) -+ IP 1 is 

l t (12) = 1(22 - I)22.  (32 - l) = 48 .  

Over  0 there lie 16 triple points, and 24 double points over  1728. Writ ing the 
primitive 12-torsion points as above  the points of order eight, we have the 
following orbits (in brackets) under m o n o d r o m y :  

1,5, 7, l l  

(0,1,2,3,4,5,6,7,8,9,10,11) 
(1,3,5,7,9,11) 
(1, 4, 7, 10), (2, 5, 8, ll) 
(1, 5, 9), (3, 7, 11) 
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, I0, 11) 
(1, 7), (5, 11) 

As we quotient  out by the involut ion (a, b) 
orbits 

Number: I 2 1 

Length: 1 2 

So the covering has the following branch 

j , 0 1728 
Number: 96 144 
Order: 3 2 

(--  a, -- b), there remain the following 

2 2 1 2 

3 4 6 12 

points: 

oo 

12 12 12 12 
2 4 6 12 

and the genus for the curve of three components  satisfies 

2 g - 2 = - 2 . 2 8 8 + 9 6 . 2 +  1 4 4 +  1 2 . ( 1 + 3  + 5 +  11) 

= 1 2 . ( - 4 8 +  1 6 +  1 2 + 2 0 )  

= 0  

The three components  of Xoo(12, 2) are elliptic. 
Let us denote by A', c A, the closure of  the set of those points, which on their 

fibre are primitive n-torsion points. Then the universal p roper ty  of  the modu la r  
curve Xoo(n, 2) defines a morph i sm 

normal iza t ion  (A',) ~ Xoo(n, 2) . 

(3.3) This morphism is a double cover, identifying each point in A', with is inverse 
(w.r.t. the addition on F(z:u), if the point lies on the smooth fibre F(z:,).) 
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Proof  It suffices to prove the assertion outside of the singular fibres F(a:u). Points 
in A', on different fibres have different images in Xoo(n, 2), because if two different 
fibres are isomorphic, they will differ by their level structure, cf. (1.1). Two points on 
the same fibre F(z:u ) with the same image in Xoo(n, 2) are equivalent under an 
automorphism of the elliptic curve F(z:,). In general this automorphism can only 
be _ identity. [] 

4 The plane curve H. 

We define the plane curve 

M n : =  ()~z'a-Cl)A n c IP 2 . 

On each smooth fibre F(~:,) the restriction of 7"c2"rl is the quotient map with 
respect to the ( -  1)-involution. This shows that A, --* 17, is a double cover. In fact, 
on the part of A', belonging to smooth fibres this is the map from (3.3). So, if we put 

H'.:= (Tz2zl)A', c II ,  , 

then: 

(4.1) The plane curve 17;, is a birational image of  the modular curve Xoo(n, 2). 

There is a formula for the equation g, o f / / , ,  cf. Sect. 5. In practice this formula 
seems however too complicated to be evaluated by hand. We want to compute the 
equation in the first few cases in another way. So we collect first a few simple 
properties of 17,. They determine its equation uniquely for low n and make it easier 
to calculate g,. 

In (2.1) we observed that A, does not meet the curves Ci, i = 0 . . . . .  3. This 
implies that 17, does not pass through any base point Po . . . .  , P3. So 17, meets the 

n z - 1 n 2 

smooth conics C(~:u) in ~ points, if n is odd, and in ~- - 2 points, if n is even. 

This gives the degree 

~(n z -  1)/4 if n is odd 

deg(17 , ) -  [nZ/4 _ 1 if n is even . 

Let us denote by X4 c PGL(2, r the symmetric group generated by permuta- 
tions of the four base points Pk = ( -+ 1 : + 1 : _+ 1). It contains the subgroup 

7~2 X ~_~2 : ( X o : X 1 : X 2 )  F'-+ (At  XO: "~ X2 : -{- X2) . 

The fix-group of Po is a copy X3 of the symmetric group permuting the three base 
points P1, P2, P 3 ,  or, the three coordinates. 

We saw already (Sect. 2) that the map X-+ IP2 is equivariant for ~2 x 7I 2. 
Unfortunately the S3-symmetries do not lift to X, because they would move the 
singular fibre of type 18 

(4.2) a) For all n > 2 the polynomial 9, is symmetric in the three coordinates. 
b) I f  n > 2 is even, the curve 17. is invariant under X4. Its equation 9, then is 

2 2 and x 2, or such a polynomial times a symmetric polynomial in the squares Xo, x , ,  
XoXxX2. (Of  course in this case 9, has odd degree.) 
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Proof We observed already that the elliptic curve F(z:.) depends only on the 
posit ion of the base points on the conic C~a:.), not on the part icular  surface X, i.e. 
not on the choice of the branch conic C. The same of course holds for the 
intersection of H .  with C(z:.). Any ~b ~ S  3 t ranspor ts  the images of  torsion points 
over C(a:u) to those on ~b(C~:.)). This implies ~b(H. )=  17.. Each S3-symmetry 
therefore multiplies the po lynomia l  g. by + 1. The multiplier  - 1  is impossible, 
because, this would imply tha t  17. would pass through the base point  Po = (1 : 1 : 1). 

If  n is even, the n-torsion subgroup  on the elliptic curve is unchanged when 
the origin is replaced by a nontr ivial  element of order two. Addit ion by one of the 
three nontrivial  two- tors ion  sections $1, $2, or $3 induces on IP2 an involution 
( X o : X I : X 2 )  ~ (XO: "~ X I :  ~ X 2 ) ,  This symmetry  therefore multiplies the equat ion 
g. by _+ 1. If we have + 1 here, g.  is a polynomial  in the squares Xo,Xx,2 z x 2. If  we 
have - 1, the polynomial  g. is a sum of expressions 

a b b c c a b a c b c b a b ~ a  c 
X o X 1 X ,  C2 + X o x 1 x a 2  + X o X 1 X 2  ~'- , X o X 1 X  2 "At- X o X 1 X  2 "-[- X O . X l X  2 

with odd exponents  a, b, c. [] 

The four- tors ion curve /74 is easy to find: The four- torsion points  on 
F(z :u) having as square the intersection points  Fta :u)~ Sin, m = 1, 2, 3, are exactly 
those points, which under addit ion with Sm go to their inverses. Their  images in IP 2 
are the fixed points  for the involut ion belonging to Sin, i.e. a coordinate  line. This 
already describes 

H 4 . ; X o X I x  2 = 0 . 

The singular fibres F k = D k + D'k are m a p p e d  onto  line pairs L k + L'k. Their 
equat ions and intersections are 

k L k L '  k I n t e r s e c t i o n  

0 X I = X  2 X I = - - X 2  ( 1 : 0 : 0 )  

1 X 0 = X 2 X 0 = -- X 2 (0 : 1 : O) 

2 Xo=Xl X o = - X l  (0:0:1) 

The two double points  of the fibre FR both are mapped  onto  the intersection point  
of Lk and L;,. Since the m a p  7z2rl is etale near  these points, the local branches 
A~ ~) m a p  isomorphical ly on to  (not necessarily irreducible) branches H~ ~) o f / 7 ,  
having the same multiplicities as An (r), and the same intersection numbers  with Lk 
and L;, as A~ J) with Dk and D;,: 

Degree o f / / ,  Branches Intersection with Lk, L'k Multiplicity 
Odd (n 2 -  1) /4 ( n - l ) / 2  (1, n -1) , (3 ,  n - 3 )  . . . . .  ( n - 2 , 2 )  (n 2 -  1)/8 

= 0 rood 4 n2/4 - 1 n/2,- 1 (2, n - 2), (4, n - 4), . . . , (n - 2, 2) n2/8 
- 2 rnod 4 , (n 2 - 4)/8 

A branch  A~ j) with intersection numbers  2j, n - 2j by 2.2 has a local equat ion 
a . x  2~ + b . y " - V +  " " =  0, so it is tangent to one of the curves Dk, D'k unless 
n ~ 2 j .  

Since the singularities o f / / ,  are concent ra ted  in the coordinate  points, the curve 
simplifies under  the s tandard  Cremona  t ransform 

(Xo :xl  :x~) .-, (xi 'x~ :x~.xo :Xo'Xl) 

17. ~ Crem(/-/ .)  . 
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This Cremona transformation is equivariant for the symmetry group I74, so 
Crem(H.)  has the same symmetry properties as the curve H.. 

One easily computes 

degree(Crem(H,)) = 2. degree(H,) - multiplicities in the coordinate points 

and finds 

deg(Crem(H.)) 

O d d  - 0  m o d  4 ---2 m o d  4 

n 2 - 1 n 2 r/2 1 
- - -  2 

8 8 8 2 

(Of course, this holds only if H ,  does not contain coordinate lines, i.e. for n 4: 4.) 
For the computations we use the following symmetric polynomials 

S 1 = X 0 + X 1 + X 2 

S 2 = X o X  1 -]- X o X  2 "~ X 1 X  2 

S 3 = X o X 1 X  2 . 

Then the equation for Crem(/ / . )  is a symmetric polynomial f .  (sl, s2, $3)  of 
total degree d. We collect some of its properties: 

(a) I n t e r s e c t i o n  wi th  L~, n odd. The line L~ is invariant under the Cremona trans- 
formation. The coordinate point Lk c~ L'k is blown up and mapped to the opposite 
coordinate line Xk = 0. The restriction of 9. to L;, vanishes only at Lk c~ L'k, sof,[ L~ 
vanishes only at the intersection of L~, with the coordinate line, which coincides 
with the intersection of L;, with the line sl = 0. Since the union Low LI u L 2 has 
equation 

we find 

(X 0 -It- X1) (Xo -I- X2) (X1 + X2) = S 1 �9 S 2 - -  S 3 , 

f n ( s 1 ,  $2 ,  S3) = S d + ( S I S  2 - -  S 3 ) . P d _ 3 ( S 1 ,  $ 2 ,  $3)  �9 

Here d = deg(Crem(H,))  and Pd-3  is some symmetric polynomial of degree d - 3. 

(b) I n t e r s e c t i o n  wi th  Lk.  Just as L~, the line Lk too is invariant under the Cremona 
transformation. The intersection points o f / / ,  with Lk outside of the coordinate 
point L~ c~ L;, are the images of the n - 1 (resp. n - 2, if n is even) nontrivial 

n-torsion points. So 9, ILk has (n - 1)/2 resp. ~ if n is even zeros outside of 

Lk c~ L~, and f ,  lLk  has the same number of zeros outside of the coordinate line 
n - 2  

Zk = 0. The polynomial h, of degree (n - 1)/2, resp. - - ~ - ,  vanishing in these points 

can - in principle - be computed: 
Consider the line Lo : xl = x2. Introduce homogeneous coordinates u : v on Do 

such that u-v  vanishes on the two intersections of Do with D0, and such that 
(u : v) = (1 : 1) is the origin Do c~ So. The map Do --* Lo is given by 

Xo = U 2 + v 2, x l  = x2  = 2 . uv  . 
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The nontrivial n-torsion points on Do are the roots of 

U n __ V n 
- - -  = 11 n - 1  .q- u n - 1 U  + �9 . . 2 r_ U n - 1  . 

U - - U  

Writing this as polynomial in Xo and xl gives for odd n e.g: 

h 3 = x 0 + 1 x  1 

h5=x~  + �89 2 

1 2 1 2 1 3 h7 = x~ + ~ X o X  1 - -  ~ X o X  1 - -  g X  1 

1 3 _ _  ~_ ~ 2  ~ 2  _ _  I 3 
h 9 = x g + ~ X o X 1  4.a,o~,l 4 X o X 1  + ~6x14 . 

n 
For even n the polynomial f .  fLo has ~ - 1 zeros outside (0: 1" 1), the images of 

the n - 2 points 4= _+ 1 of order n on Do. The equation for these zeros is obtained 
by expanding 

U n __ V n (u2)./2-1 -3vz 
U 2 __ U 2 - -  AI - ( U 2 ) , / 2  ,~_ . . .  _~_ ( / ) 2 ) , / 2 - 1  

in Xo and xl:  

h6 X 2 ~ 1 2 
- -  _ _  g X  1 

hs X 3  0 1 2 - -  g X o X  t 

h l o = x 0 4  �88 2 2 X o X  1 "{- I ~ X  4 

h i  2 _-- Xo 5 3 2 3 4 - -  X o X  1 @ ~ X o X  1 . 

This polynomial h.(xo, x~ ) vanishes on the intersection of Lo with H.  outside of 
(1:0:0) and after the Cremona transform - h.(Xl, Xo) vanishes on the intersection 
of Lo with Crem(// .)  outside of the line Xo = 0. 

(c) Intersection with coordinate lines. A branch H.  (j) of H. at (1 : 0 : 0) with intersec- 
tion numbers (H. ~j)- Lo) - n - 2j, (H. (j). L~) = 2j goes under the Cremona trans- 
form to a branch with intersection numbers 

Lo L~ I Xo = 0 

n - 4j 0 I 2j (4j < n) 
0 4 j - n  n - 2 j  (4j>n) 

So Crem(H.)  meets the coordinate line Xo = 0 at its intersection (0:1 : 1) with Lo 
with multiplicity 

f 
( n -  1)(n + 3)/16~ t 1 
(n z - 4)/16 t 2 

Z 2 j = k ( k + l ) =  ( n + l ) ( n - 3 ) / 1 6 |  i f n = 4 k +  3 

l<=j<~ n (n -  4 ) / 1 6  .J 4 . 
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And at  the in tersect ion (0 : 1" - 1) with the line L ;  the mul t ip l ic i ty  is 

n=4k: ~ (n-2j)= 
k<j<~ 

n = 4 k + l :  ~ (n - 2j) = 
k<j<~ 

n = 2 k + 2 :  ~ (n - 2j) = 
k<j<~ 

n = 4 k + 3 :  ~ ( n - 2 j ) =  
k<j<~ 

k - 1  
(2k - 2j) = k (k  - 3) = n(n - 4)/16 

j = l  

k 

Z ( 2 k +  1 - 2 j ) = k  2 = ( n - 1 ) 2 / 1 6  
j = l  

k 

~" (2k + 2 - 2j) = k(k  + 1) = ( n  2 - -  4)/16 
j = l  

k + l  

y, (2k + 3 - 2j) = (k + 1)2 = (n + 1 t2 /16 .  
j = l  

For odd n the two intersect ion numbers  with the coord ina t e  line a d d  up to 
deg(Crem(/- / . ) )  = (n 2 - 1)/8. Since the three intersect ions of the lines L~ with the 
coord ina te  lines Xk = 0 are on the line Sl = 0, and  since the conic s 2 - 4s2 = 0 
touches  the coord ina t e  lines at  their  intersect ion with Lk, the curve C r e m ( H . )  
intersects  the coord ina t e  t r iangle s3 = 0 as the curve sT 1 �9 (s 2 - 4s2) =~ = 0, with ml 
and rn2 the in tersect ion mult ipl ici t ies  of C r e m ( / / . )  with the coord ina te  lines jus t  
computed .  W e  conclude 

I f fs~n-1)2/16 "($2 - -  4S2)(n-1)(n+3)/32"~ if f n -= 1(4) 
fn=S3"qd-3+lS( ln+1)2/16"(S21 4S2)tn+X)(n-3)/32J . n - -  3(4) . 

(d) Intersect ion with the line sl  = 0 (n > 3). The  first equa t ion  we de te rmine  below 
will be f3 = s t .  The curves C r e m ( H , ) ,  n > 3 do  not  meet  Crem(H3)  outs ide  of the 
coord ina te  lines. By 2; 3-symmetry,  the intersect ion mult ipl ic i t ies  a t  the three points  
of in tersec t ion  are equal.  Hence C r e m ( H , )  cuts out  the same divisor  on the line 
sl = 0 as the po lynomia l  s~/3, where d := deg(Crem(H, ) ) .  This implies 

fn  = Sa3/3 + S l r d - l ( X O ,  x l ,  X 2 ) .  

N o w  we determine  the po lynomia l  f ,  in the few cases. F o r  po lynomia l s  
depending  only  on the squares of the coord ina tes  x0, x~, x2 we abbrev ia te  

2 2 2 2 2 2 ~2 ~2  ~ 2  0"11-~- X2 ~'- X2 "qt- X22, 0 2 : =  XoX1 -}" XoX2 q- X1X2 ,  0"3:~-~- wO.a,l .~2 . 

The case n = 3. The symmetr ic  

The case n = 5. The symmet r ic  

f5 = g +  

= CS 3 + SI(S  2 - -  4 S 2 )  , C e ~  , 

This implies a = - c = - 4. So 

.1"5 = s 3 - 4sl s2 + 4s3 

po lynomia l  f3 is l inear,  so f3 = s l .  

po lynomia l  f5 has degree three. We have 

a ( S l S  2 --  S3)  , a ~ r  ( a )  

(c) .  

= xg + x~ + ),I - (XgXl + . . .  + x , x , b  - 2 x o x , X 2 .  

This is the equa t ion  of  a smooth  cubic. The  curve Xoo(5, 2) has genus one (cf. 4.2). 



Modular curves and Poncelet polygons 41 

The  case n = 6. The curve Crem( / / 6 )  has degree four, it conta ins  Crem(H3) ,  and  it 
is invar iant  under  s ign-changes of the coordinates .  This implies 

f6 = (Xo q- X1 + X2) (Xo -t- X1 -- X2) (Xo -- X1 q- X2) (--Xo + X1 + X2) 
2 2 2 2 = x~ + x~ + x~ - 2 ( x g x ~  + xoX~ + X x ~ )  

= 0 . 2  _ _  4 0 "  2 . 

After dividing by  - S l ,  the equa t ion  for Crem(H3) ,  we find 

fg = --  (sl - 2Xo)($1 - 2Xx)(Sx - 2x2) 

= s 3 - 4sl S 2 -~ 8 S  3 �9 

The  case n = 7. The symmetr ic  po lynomia l  f7 has  degree six. We  know 

f7 = s16 -t- (s1s 2 - -  $3)'P3 (a) 
4- 2 

= $ 3 " q 3  -}- S1 ( $1  - -  4sz) (c) . 

This implies  P3 = - 4s13 + cs3, c ~ l~. Thus 

fT(1 + 2X, 2x + X 2, X 2 )  = ( l  -~  2X) 6 + (2X + 4X 2 + 2x 3) ( - -  4(1 + 2X) 3 + c x  2) 

= (1 + 2X) 6 + 2X- { -- 4 -- 32x + (- -  100 + C)X 2 

+ ( - -  152 + 2c)x 3 + ( - -  112 + C)X 4 -  32xS)} 

is a po lynomia l  of degree three, hence c = 112 - 6 .24  = 16. We c o m p u t e d  

f7  = s 6 + (&s2  - s 3 ) ( - 4 s  3 + 16s3) 

= s 6 - 4s~s2 + 4s3s3 + 16SxS2S3 - 16s32 

x 6 + x  6 + x  6 + 2 ( x s o x l + . . .  + x l x S 2 ) _  4 2 2 4 = (XoXl + " ' "  + XlX2) 
3 2 3 3 2 2 2 - 4 ( x 3 x  3 + XoX2 + x l x 2 ) -  2 X o X l X 2 ( X  3 + x 3 + x~)  + 2XoXlX2  �9 

One checks tha t  the curve Crem(Hv)  has two double  poin ts  on each coord ina te  
line. E.g. on the line Xo = 0 these are (0 : 1" 1) and  (0 : 1" - 1). In  the la t ter  po in t  one 
branch of  the doub le  po in t  even has threefold contac t  with the coord ina te  line. 

The  case n = 8. Crem(H8)  is a curve of  degree six. By (4.2),b its equa t ion  f8 is 
a symmetr ic  po lynomia l  in x g, x 2, x 2. We  put  

f s (x0 ,  X 1 ,  X 2 )  = a0- 3 + b o l a 2  + ca3 . 

By (b) its res t r ic t ion to Lo 

fs(1, x, x) = a(1 + 2x2) 3 + b(1 + 2x z) (2x 2 + x 4) + c x  4 

= (8a + 2b)x 6 + (12a + 5b + c ) x  4 + (6a + 2 b ) x  2 + a 

is a po lynomia l  of  degree < 3, hence 

a = t , b = - 4 ,  c = 8 .  

W e  c o m p u t e d  

f8 = a3 - 4ol  a2 + 80" 3 

2 2 2 2 2 2 2 2 2 2 
= (X 2 "t- X 2 + X22) 3 - -  4(Xo 2 + x~ + x 2 ) ( X o X l  + XoX2 + x l x 2 )  + 8XoXtX2  

x 6 + x 6 + x  6 4 2 2 4 2 2 2 = - - ( X o X x  + " ' '  +XlXz)+2XoXxXz 

= - (xg + x~ - x2 ~) (xo ~ - x~ + x ,  ~) ( -  x~ + Xl ~ + x ,~) .  
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The case n = 9. The po lynomia l  f9 has  degree ten and splits off the l inear  factor  
f3 = s l .  We  write f9 = s l f ~  with 

f~ = s 9 + (sis2 - s3)(as 6 + bs4s2 + cs3s3 + ds~s 2 + es lszs3  + f s  3 + gs~) (a) 

3 2 S3(Q'S  6 b's~s2 c's~s3 .v 2 z : SI (S  1 - -  4S2)  3 q- q'- + q- u S1S 2 

+ e's lsas3 + f ' s  3 + g's 2) (c) .  

This implies a = - 12, b = 48, d = - 64, and  f = 0, so 

f~  = s 9 + s2(sls2 - s 3 ) ( -  lZs~ + 48s2s2 + 64s 2) 

q'- (S1S 2 - -  $3)$3(CS 3 q- eS1S 2 n t- g s 3 )  �9 

This po lynomia l  restricts to Lk as 

f ~ [ L k  = (1 + 2 x )  9 + (1 + 2 x ) 2  ( 2 x  + 4 x  2 + 2 x  3) 

�9 { -  12(1 + 2x) 4 + 48(1 + 2 x )2 (2 x  + x 2) - 64(2x + x2)2)} 

+ (2x + 4x 2 + 2 x 3 ) x 2 . { c ( 1  + 2x) 3 + e(1 + 2x)(2x + x 2) + gx  2} 

= 1 - 6x + (136 + 2c)x 3 + (256 + 16c + 4e)x  4 

+ (128 + 50c + 18e + 2g)x  s + (256 + 76c + 28e + 4g)x 6 

+ (512 + 56c + 18e + 2g)x 7 + (256 + 16c + 4e)x 8 . 

All terms of degree > 4 should  vanish, hence c = - 64, e = 192, and  g = - 192. 
We c o m p u t e d  

f~; = s 9 + (s is  2 - -  $3)(- -  12S 6 + 48S~S2 -- 64S3S3 -- 64sZs 2 + 192SlSzS3 -- 192S32) 

= S 9 - -  3 , 2 2 S 7 S 2  + 3 , 2 2 S 6 S 3  + 3 .o4o5o2~ o l o  2 - -  7 .24S~S2S  3 

-~ a.")6~3 ~2OlO3 __ ,~O6~ o3olo2 + 2Ss2s22s3 --  3 " 27SLS2 $2 + 3 " 2Ss3 3 . 

The case n = 10. The curve Crem( / /10)  has degree twelve, it conta ins  Crem(Hs) ,  
and it is invar iant  under  s ign-changes of the coordinates .  This implies 

(X 3 -4- X 3 --  X 3 --  (X2X1 --  X2X2 -I'- XO X2 --  X2X2 -~- Xo X2 + X1X2)  + 2 X o X l X 2 ) .  

(x 3 -- x 3 + x 3 -- ( -  XZoXl + x~x2 + XoX~ + x2x2  + XoX 2 - x l x  2) + 2XoXlX2) . 

( -  ~ + ~ + x 3 - (x?,x~ + x~x~ - xox~ + ~ x ~  - ~oX~ + ~lX~) + 2 x 0 x ~ ) .  

o r  

2 

f ;o  = 1-I ( s3 - 4s is2 + 8s3 + xk(s  2 - 2s2) - 2x2 ) .  
k=O 

The case n = 11. We did not  manage  to compute  f ~ .  It seems, the proper t ies  
collected so far do  not  de termine  the curve Crem( / /x~)  uniquely.  

The case n = 12. The  po lynomia l f a2  is of degree 16. F o r t u n a t e l y  it splits off f6 as 
a factor. We write f i z  for the po lynomia l  f~2 / f6 .  This po lynomia l  of degree twelve 
is symmetr ic  in x20, x1,x2.2 2 So 

2 2 f 6  = ar 6 + b o ~  + cr + d ~ 2  + e r  + f03  + ~ . 
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By (b) this po lynomia l  restricts to Lo as 

h12(x, 1 ) _ 1 6 x  5 - 1 6 x  3 + 3 x = 4 x  2 _ 3 .  

h6(x , 1) 4x 3 - x 

Evalua t ing  the l inear  condi t ions  imposed by this equa t ion  we find 

a = - 3 ,  b = 2 0 ,  c =  - ( 1 6 0 + 4 d ) , e = 6 7 2 +  18d, 

f =  - (128 + 4d), g = - (944 + 27d) .  

Unfor tuna te ly  there is the free pa r ame te r  d not  de te rmined  yet. We restrict  this 
equa t ion  to the line x0 = 0: 

2,a .  Z x Z + d ( x l x 2 )  X l X z - ( 1 2 8  + 4 d ) x 6 x  6 - -  3 ( X  2 + X 2 )  6 ~- 20(x 2 + xz /  Xl 2 2 2 4 4 

= ((x~ + x2) 2 - 4 x 2 x ~ ) ( -  3(x~ + x2) 4 + 8(x~ + x22) 2 xlx22 2 -t- (d + 32)x4x~.  

By (c) this po lynomia l  should  spli t  off the square of 

(X  2 + X22) 2 - -  4x2x2  = (x 2 - x2232 . 

This now determines  d -- - 16 and  we have 

f1'2 _ 3006 + 5.220-41002 3.250-30- 3 _ ,,4 z 2 = - z 0-10-2 + 3.270-10020-3 - 260-23 - 290 -2 . 

F r o m  Sect. 3 we know that  this curve splits into three elliptic quartics,  bu t  we did 
not  try to find their  equations.  

The curve Crem(/ / , , )  is C remona - t r ans fo rmed  back to H ,  by the subst i tu t ions  

S 1 ~ S 2 ~ S 2 ~ S 1S 3 ~ S 3 k-+ S 2 , 

The equat ions  ob ta ined  are given in the following table:  

9 3  = S2 

g4 = S3 

95 -= - -  4 S l S z S 3  + $32 -]- 4s2 

0 6  = 002 __ 40-1003 

o; = [ I  (s2 - xkxk+l )  

g7 = - 4s ls~s3 + 16sls2s 3 + s 6 + 4s3s 2 - 16s~ 

gS  = $3 " ( - -  40-10-2003 "}- 0-23 Jr- 8002) 

g ~  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
= ( X o X  1 "-{- X o X  2 - -  X I X 2 )  - -  - -  .~- X 1 X 2 )  X o X  2 2 xlx2)( + XoX2 + X o X 1  X o X 2  

9 9  = - -  ")6 ~3 ~3 o3 " ) 4 0 2  oS 02 ~ 2'* . 2 4  4- 3 /., - O l O 2 O  3 .--[- 3 "  ,.r ~ - 3 "SlS72S3 - 7 "sls2s3 

+ 28"S1S2S3224 __ 3 ~ 1 7 6  1S2S5 q_ S 9 + 3 . 2 2 . $ 2 S  362 -t- 26"$32S43 -t- 3 " 2 8 " S  6 

3 3  gio = H ( -  4 " s l s 2 s 3  + s3 + 8s2 - XkXk+l(2"SlS3 -- S 2) -- 2"Xk xk+l )  
k 

Y l 2  __ 2 6 " 3 3 04- ~ 2 ~ 2 ~ 2  2 2 2 7 " = 0"1003 - -  1,, " U l U 2 V  3 -'1- 5 "  " 0"10.24003 + 3 "  0"10"20" 2 - -  3 " 0 0 6  

_ 3 . 2 s . 0 0 3  0-~ _ 2 9 . 0 0 ~ .  
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5 Poncelet polygons 

The double cover E(~: . )~  C(z:.) from Sect. 1, branched over the base points 
Po . . . . .  P3, has a geometric interpretation in the plane IP2: We fix a smooth conic 
C :# C(~:.) in the pencil and consider pairs x, L where x e C(~:.) and L is a tangent 
line to C through the point x. Since the general point x ~ C(z:.) admits two tangents 
to C, the projection (x, L) w. x is a double cover of C(a:.), It is branched precisely 
over the four base points, because at these four intersections x e C~x :.) c~ C the two 
tangents from x to C coincide. 

It is easy to check, e.g. by explicit equations, that these pairs (x, L )e  C(x:.) x C* 
IP 1 x ~1 form a smooth curve (of bidegree (2, 2)), if both conics C(z:,) and C are 

smooth. So this double cover of C(z:,) is an elliptic curve isomorphic with E(a:u ). 
Poncelet's theorem is proved easily using this double cover (cf. e.g. [GH]) :  

With each pair x, L ~ E(~:u) we can naturally associate another such pair x', L', 
where x' is the 'second' intersection of L with the conic Ctx:u) and L' is the 'second' 
tangent to C through x'. One checks, that this map (x, L) ~-* (x', L')  has no fixed 
point on the elliptic curve E(z:,), hence it is a translation on this curve. (The inverse 
of this translation is the map x, L ~-~ x", L" with L" the second tangent through 
x and x" the second intersection of L" with C(x:u). ) If there is a Poncelet n-gon 
circumscribed about C and inscribed into C(a :u), then this translation is of order n. 
And if the translation has order n, then its application to an arbitrary pair 
x, L e  E~x:,~ yields a Poncelet n-gon. This proves 

Poneelet's theorem. I f  there is one n-gon circumscribed about the smooth conic C and 
inscribed into the smooth conic C(z:u), then there is an infinity of such n-gons. 

We endowed the elliptic curve E(~:u ) already with an origin, the point over Po. 
The Poncelet translation described above maps this point to the pair P, T where 
T:= Tvo(C) is the tangent to C at P0 and P is our control point 

P := Tvo(C) ~ C(~:u) 

on Cry:u), the second intersection of this conic with T. Clearly, the Poncelet 
translation is n-torsion if and only if the point P, Te  E~z:u) is n-torsion, i.e., if and 
only if the control point P belongs to the curve H,. This is the essential new, however 
easy observation of our paper. 

(5.1) A smooth conic C in our pencil is n-inscribed into the smooth conic D in the 
pencil if and only if the control point P = D c~ Teo(C) belongs to /7 , .  

Of course the meaning of n-torsion is a little ambiguous. If it means primitive 
n-torsion, i.e., if a Poncelet triangle is not counted as special form of a Poncelet 
hexagon, then in our statement the curve 17, should be replaced by t7', ~ H,, where 
all curves Hk, kin, are removed. 

Griffiths and Harris [GH]  used a formula of Cayley to put the condition that 
D be n-circumscribed into the form of a symmetric determinant: Take one indeter- 
minate t to write in form of a power series 

k /de t ( tO + C) 
~et(C)) = 1 + Al t  + AEt: + ' " .  



Modular curves and Poncelet polygons 45 

Then D is n-circumscribed abou t  C if and only if 

(7 det " = 0 ,  

A +t "'" A2m 

A3 ... Am+ 1 ) 
det ' " = 0 ,  

Am+ 1 ... A2m_ 1 

(n = 2m + 1) 

(n = 2m) 

In part icular  we find 

det(C) 

in our pencil, passing through x, is n-circumscribed abou t  the conic 

C 1= x 2 - -  x 0 

X 0 - -  X 1 

which is tangent  at Po to the line T joining x with Po. Then 

det(C) = (Xo - x l ) ( x l  - x2)(x2 - Xo) 

det(tD + C) = det(C) + t . d e t ( C ) .  {(Xo + x l )  + (xl + x2) + (x2 + Xo)} 

+ t 2 " d e t ( C ) ' { ( X o  + x l ) ( x l  + X2) AV (X0 -Ji- X l ) ( X 2  -[- X0) 

+ (X1 + X2) (X2 + X0)}  

+ t 3 .de t (C) . (Xo + Xl)(Xl + X2)(X2 -]- X0) 

det( tC + D) 
- 1 + t ' 2 s l  + t 2"(s 2 + s2) + t 3"(sas2 -- s3) .  

A1 = Sl 

A 2 = �89 2 

A 3 = - - � 89  3 

A4 �89 1 2 = - -  g S  2 �9 

This gives the right polynomial  f ,  for n __< 5. In the computa t ion  of the A, lots of 
cancellations take place. The higher order  computa t ions  are for symbolic  manip-  
ulation on the computer .  So we did not  try to evaluate this formula  further. 
However ,  since all coefficients in the power  series expansion are rational,  we deduce 
from it: 

(5.2) The plane curve 1-1. is defined over the f ield o f  rational numbers. I ts  equation f .  
can be chosen with integer coefficients 

- ) 
D : =  - x g  

Xo - 

This de terminant  gives the equat ion f ,  of our  curve 17. in the following way: 
A point  x = (Xo :xl  :Xz)elP2 lies o n / / .  if and only if the conic 
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If we fix C in our pencil, then the intersections x o f / / ,  with the tangent T to  C at 
Po determine all the conics C(a: ,~ in the pencil n-circumscribed about C. As H.  does 
not pass through the point Po, the general line T through this point does not touch 
H.  in its points of intersection with this curve. Then Tintersects H,~ in precisely c(n) 
points. This shows 

Theorem 1. Let  {C(z:u):(2:/i)e IP 1 } be a pencil o f  plane conics with .four distinct 
base points. For the general conic C in this pencil there are c(n) different conics 
C(u:a ) in the pencil n-circumscribed about C. 

As/7.  does not pass through any of the four base points, the general conic in the 
pencil does not touch H ,  in its points of intersection with this curve. The lines 
T connecting such a point with the origin Po are all distinct and therefore tangent 
to as many distinct conics C in the pencil. This proves 

Theorem 2. Let  {C(~:u):(2:II)~IP1 } be a pencil o f  conics as in Theorem 1. For the 
9eneral conic C(a:u) in this pencil there are precisely 2-c(n) different conics in the 
pencil n-inscribed into C(z:,). 

6 Simultaneously inscribed and circumscribed conics 

First we introduce an involution I of the plane. Two points x and y~  P2 are in 
involution under I if 

1. x = T n  C, where C is a conic in the pencil and T a line through Po, 
2. y =  T * ~ C * ,  where again C* is a conic in the pencil and T* a line 

through Po. 
3. C* is tangent to T and T* is tangent to C at Po. 

(6.1) The involution I is the Cremona transformation 

Yo = x 2 + x 2 - x20 + XoXl + x l x 2  + XoX2 , 

Yl  ~- X2 Jr- X2 --  X2 "+ XoX1 -~ X1X2 -~- XOX2 , 

Y2 = X2o + X2 -- X2 + XOXl + X1X2  "~ XoX2  , 

based on the three points P1, P2, P3 of  the pencil different from Po. 

Proof  The point Po = (1 : 1 : 1) is a fixed point of the Cremona transformation 
(Xo:Xl:X2) ~ (Yo:Y~:Y2). Each conic in our pencil therefore is transformed into 
a line through Po. All we have to show is that at P0 the conic and this line are 
tangent at to each other. But let 

O~Xo + ,6xl + 7 x 2 = 0 ,  o~ + [3 + 7 = 0 , 

be a line through P0. Its transform is the conic 

( [ 3 + 7 - ~ ) X 2 o + ( 7 + ~ - [ 3 )  x 2 + ( a + [ 3 - y ) x  2 = - 2 ( e  x 2 + [ 3  x 2 + ~ / x 2 ) = 0 .  

[] 

Next we define the curve/7* := l (H . )  c P2. It is a birational image of H,. Since 
/7, does not pass through the three base points of the Cremona transform I, 
we have 

deg(H*) = 2. deg(H, ) .  
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We are interested in /7* for the following reason: A control  point  
P = D c~ TPo(C)~ll ,  is mapped  under I to a point  P*  = Tpo(D) c~ C. The roles of  
the conics C and D are interchanged. If we use Q = P*  ~ /7*  as control  point, just as 
we did before with points i n / 7 , ,  we get a pair  C, D in the pencil such that  D is 
n-inscribed into C. 

(6.2) The curve/7* is the locus of points TPo(C)c~ D where C and D belong to the 
pencil such that D n-inscribed into C. 

This is nothing sensational, but  for the points in the intersection /7, c~/7*. 
These points parametr ize  pairs C, D of conics in the pencil such that  simultaneously 
C is n-inscribed into D and D is m-inscribed into C. Quite amusing situations - they 
lead to pairs of  elliptic curves, whose mutual  relation seems interesting to us, 
a l though we do not unders tand it at  the moment .  

The c u r v e / 7 ,  is singular only in the three coordinate  vertices. They lie on the 
fundamenta l  lines xl = - xj of the Cremona  t ransformat ion  I and are t ransformed 
into the three base points. Therefore 

(6.3) The curve 17" is singular only in the three points P1, P2, P3. It does not 
intersect the three lines xi = - xj but for these three singularities. 

This means that  curves 17,, and 17" never intersect in points which are singular 
on one of them. So 

deg( /7 , . ) .deg( /7*)  

is the number  of  their smooth  intersection points, counted however  with the order 
of contact  as multiplicity. As we are unable to show that  these intersections are 
always transversal,  we refrain f rom giving a detailed statement.  

(6.4) There is a one-to-one correspondence between equivalence classes of  

- pairs of  smooth conics C, D c ]P2, having four distinct intersection points, such 
that C at the same time is m-inscribed into and n-circumscribed about D (equiva- 
lent under the projective group;) 

- orbits of  points x ~/7,  c~ II*,  not on a line Li (equivalent under the symmetric 
group) X,3. 

Proof Given a pair C, D as in the statement,  there is a projective t ransformat ion  
mapp ing  their four intersection points onto  the four points  (1 : + 1 : + 1) and the 
two conics onto  conics in our pencil. Since C is m-inscribed into D, the tangent  T to 
C at P0 intersects D in a point  x ~ /7" .  Since C is n-circumscribed abou t  D, the 
tangent  T*  to D at Po meets C in a point  y~[1, .  The involution I maps  y onto 
x showing tha t  x ~/7,. m /7* .  

The projective t ransformat ion  above is unique up to 2;4-symmetries. Distin- 
guishing the origin Po = (1 :1 :1)  we have Z'3-symmetries only. This proves  the 
bijection in the statement.  [] 

If we intend n-gons in this s ta tement  to be primitive, the curve 17, has to be 
replaced by H" and 17" by the curve I(H~,). Their  intersection number  is 

2 .c (n ) . c (m)  . 
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If there is no fixed point for Z3 among  the points of intersection of  these two curves, 
then 3 x .  c(n) .  c(m) is the number  of orbits. There are three types of fixed points: 

the fixed point  Po = (1 : 1 : 1). It does not  lie on any cu rve /7 , .  

the orbit of  two points (1 :o,)k:o)2k), k ~ 1, 2, with co a primitive third root  of  
unity. These two points lie i n / / 3  n / / J ' ,  see the following example. 

the points on the lines L k and L~. The c u r v e s / / ,  and H*  never meet on L;,, but  
L k might contain intersections of H,  and / /* .  For  these points the conics 
degenerate however. 

The in te r sec t ion / / ,  n / / *  contains at most  2.  c(n) .  c(m) points. The number  
shrinks perhaps, if we remove points on the three lines Lk,  k = 0, 1, 2. There remain 
at most  �89 c(n) .  c(m) orbits of points in this intersection, unless n = m = 3. In this 
case one orbit consists of  three points, and the computa t ion  in the first example 
below shows that  there is another  additional orbit. This proves 

Theorem 3. Each smooth conic in the plane lP 2 is (up to  projective equivalence) 
simultaneously n-inscribed into and m-circumscribed about 

2 i f m = n = 3  

< � 8 9  i f  m or n > 3 

conics D (meetin9 C in four  distinct points). 

We don ' t  know if there are more  general properties about  the intersections 
/ / m n / / *  which can be proven in this context. So we conclude by comput ing  
explicitly the simplest examples. First we need the transforms of  the symmetric 
polynomial  s2 under I. Abbreviating 

p := s 2 - Sz , 

the Cremona  t ransformation I is written 

Yk = P -- 2X 2, k = 0, 1,2 . 

Therefore 

I:S2k-* S*:= 3p 2 -- 4p(s 2 -- 2s2) + 4a2 = -- S~ + 6S2S2 -- 8SiS 3 -- s 2 . 

The case (m, n) = (3, 3). The points in H 3 n / / *  are defined by s2 = s* = 0. This is 
equivalent with 

s2 = sl(Ss3 + s~) = 0 .  

Now these equations are solved elementarily. We find the following eight points 

( l + x / 5  q, := 
co a primitive third roo t  of unity, t / . -  2 ' 

- The two points (1 : o k : e)2k), k = 1, 2. 
- T h e  orbit of (1 :r/ : t / ' )  under $3. 

The ease (m, n) = (4, 3). The c u r v e / / 4  splits into the three coordinate lines xi = 0. 
The intersection o f / 7 *  with the line Xo = 0 is 

(X 1 Jr- X2) 4 I 6 ( X  1 "4- X 2 ) 2 X I X 2  n t- ( X 1 X 2 )  2 = 0 . 
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Again this is solved elementarily to give 

(Xo:X 1 : X 2 ) =  (0:1 "{- % ~  "~ % / -  1 -}- 2 X / 2 : 1  + x / 2 -  x / - 1  + 2,, /2) . 

Here xl and x2 can be permuted. For x/2 we have two signs, but in the same point 
the same sign must  be taken. 

The case (m, n) = (3, 4). We just Cremona  transform the points f rom the last case 
under 1. We have 

S 1 = X 1 -~- X 2 = 2 + 2, , /2  

S 2 = X I X  2 = 4 

p = s ~ - s ~  = 8 + 8~f2 

= 2 + + (2 + + 

x2 2 = 2 + 4, , /2  - ( 2  + 2 . , ~ ) x / -  1 + 2 x / 2 .  

So the transforms are 

( y o : Y x : Y 2 ) = ( 2 : x / 2 - -  1 + x / - -  1 + 2x /2 :  x / 2 -  t - -  ~ / - -  1 + 2x /2  ) . 

The case (m, n) = (4, 4). The line Xo = 0 transforms under I into the conic 

- -  X 2 "{- X 2 "~ X 2 "}- X o X  1 "}- X o X  2 "1- X I X  2 = 0 . 

The curve F* therefore consists of the three transforms of this conic under the 
symmetric group Z3. The intersection of  this conic with the line xo = 0 is the pair 
(0 : co k : co2k), k = 1, 2. The intersection with the line xl = 0 is the set of two points 
(1:0:r / )  and (1 :0  : t/'). 
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