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0 Introduction

A Poncelet-polygon is a polygon in the projective plane P, = IP,(C) (the base field
always is €) with its vertices on one smooth conic D < P, while its sides touch
another smooth conic C. If the polygon happens to be a n-gon, we call the conic
C n-inscribed into D, and D n-circumscribed about C. If m divides n, we do not
consider a m-gon a special kind of #n-gon. The aim of this note is to compute the
following numbers:

e The number of conics D in a general pencil C,. ), which are n-inscribed into
a fixed conic C of this pencil,

e the number of conics D in a general pencil, which are n-circumscribed about
a fixed conic C of this pencil,

e the number of projective equivalence classes of pairs C, D of conics (in
general position, i.e. meeting in four distinct points) such that C is n-inscribed
into D and D is m-circumscribed about C.

To formulate our results, we need the number
t(n) := the number of primitive n-torsion points on an elliptic curve .

Here we mean by a “primitive” n-torsion point some point, which is not torsion of
any order smaller than n. Clearly the function t(n) is multiplicative in the sense of

* Parts of the resuits and the essential techniques of this note are taken from the Erlangen thesis
(1991) of the second author. They were circulated as Nr. 122 of Schriftenreihe Komplexe
Mannigfaltigkeiten. Our research was supported by DFG grant Ba 423/3-3 and the European
Science Project “Geometry of Algebraic Varieties” SCI-0398-C(A)
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number theory. Soif n = p¥+ ... - p¥ is the prime factor decomposition of n then
t(n)=(pf — Hpi™ V. .- (p? - 1) pPl
For example
n*—1 if n=pis an odd prime
)= {nz —4 if n=2p with p an odd prime .
Unless n = 2, the number t(n) is divisible by four. We abbreviate
cn)=4%tn).
Our results are

Theorems 1 and 2. Each conic C ;.. = AC + uD in a generic pencil (this means
C and D intersect in four distinct points) is n-inscribed into c(n) conics in this pencil,
and n-circumscribed about twice that number of conics in the pencil.

Of course, this number includes certain multiplicities, but for a general conic
C in the pencil the multiplicities are one.

Theorem 3. Each smooth conic C in the plane P, is (up to projective equivalence)
simultaneously n-inscribed and m-circumscribed about

2 lf m=n=3
<%-cm)e(n) if mor n>3
conics D (meeting C in four distinct points), counted up to projective equivalence.

This number again contains multiplicities, but unfortunately here we cannot
control them.

The proof of these facts consists of relating them to plane projective models of
certain modular curves: It is well-known that the Poncelet-property depends on
a torsion element in the elliptic curve, which is a double cover of C, branched over
the four points of intersection of C with D, cf. [GH]. We only put one parameter
into this situation and study torsion sections on rational elliptic surfaces, which are
double covers of the plane. The image of the n-torsion curve on this surface is
a curve IT,elP,, which is the birational image of the modular curve Xg o(n, 2)
parametrizing isomorphism classes of

e clliptic curves with a level-2 structure
e and a primitive torsion-point of order n on this curve.

It is easy to see that
degree (I1,) = c(n) .
The numbers mentioned are

e the intersection number of I7, with a line,

e the intersection number of IT, with a conic,

e the intersection number of IT,, with IT}¥, the image of I, under a certain
Cremona transform, which therefore is a curve of degree 2-c¢(n). This
intersection number is divided by six, because of projectively equivalent
situations.
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1 r;[ll?ﬁ elliptic surface

We fix a general pencil Cy;.,, of conics in the plane IP,. Here “general” means that
the pencil has four base points. We call these base points Py, Py, P,, P5. They are
in general position, so we can choose homogeneous coordinates (xg, x;, x,) on IP,
such that

Po=(1:1:1), P, =(—1:1:1), Py=(l:=1:1), Py=(:1:-1).
The pencil then consists of all conics
AxE 4 ux? — (A + p)x3, A:pelP,.
All these conics are smooth but for the three values

(A:w)=(1:0,(0:1),(1: = 1),

for which the conic C;.,, splits into a pair L,,L; .k = 1, 2,3, of lines. We denote by
L, the line in this pair containing P,.
Each conic in the pencil is invariant under the group

Z,x2, =2~
2 2T (xo:x1: X)) (E X 2 X1+ x3) .

We denote by E(; ., the double cover of the conic C; ., branched over the four
points Py, Py, Py, P3e€Cy;.,. If C(;., is nondegenerate, then E ;. ,, is a smooth
elliptic curve. We distinguish the point over P, as origin on E,;.,,. Then the three
points over Py, P,, P; are the three non-trivial half-periods on E;.,,. The chosen
ordering Py, P,, P, of these three points defines an ordering of the three non-trivial
half-periods on E;.,, i.e. a level-2 structure on the elliptic curve E;.,).

(1.1) Given an elliptic curve E with a level-2 structure there is a unique curve
E(;., and an isomorphism E — E_; ., compatible with level-2 structures. In this way
we get an identification of the parameter curve P, (1: p) of our pencil with the modular
curve X ,, which parametrizes elliptic curves with level-2 structure.

Proof. We represent E as a double cover of some P, with four branch points
eg, €1, e,,e3€ Py, the point over the branch point e, being the origin on E. We
assume that the three other branch points are ordered in the way of the level-2
structure and denote the cross-ratio [eg, €, €5, €3] by a.

The cross-ratio [Py, P,P;, P3]c, , of the four points Py, ...,P; on a conic
Ci: 4 1s computed as follows: Choose an auxiliary line L < IP,, e.g. the line x = 0.
Project the three points Py, P,,P; from P, into this line to obtain the points
(0:1:1), (0:1:0), and (0:0:1). The tangent Tp,(C;.,) of the conic C;.,, at the
point P is the line Axq + ux; — (A + p)x, = 0. It meets the line L in the point
(0:4 + p:p). So we find

[Po, P, P2, P3]c,,, = [(1:1),(1:0),(0: 1), (n:— 4) T,

1909 w’—ll*}
A4
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A
For; = a, and only for this value of (4: u), there is an isomorphism P, — C; .,

sending e, to Py, k =0, . . ., 3. It induces an isomorphism E — E ;. ,,, uniquely up
to the covering involution. O

Our next aim is to combine all the elliptic curves E; ., into one elliptic surface.
As there is no universal elliptic curve with level-2 structure, this is possible only
with a slight modification:

We fix one smooth conic C in our pencil C;,,,. We denote by y:IP; xIP; - P,
the double cover with branch locus C. Then y ~*(C;.,,) is isomorphic with the
elliptic curve E;.,, for all conics C;.,y * C.

We denote by ¢:IP, — IP, the blowing-up of the four base points P, . .., P;

with E, = 6~ ' P, < IP, the exceptional curve over P,k =0,...,3.
_ The pull-back 7:Y—>P, of y to P, is a double cover branched over
C + Ey+ ... + E;, the total transform of C under o. The surface Y has four
ordinary double points over the four intersections CnE;, k=0, ...,3. We de-
note by t,:X — Y the minimal desingularization of this surface. So we have the
following diagram of maps:

X = ¥y -2, P,xP,

P
P, % P,.

The pencil C,.,, lifts to ]T’z as a basepoint-free pencil of conics and to the
rational surface X as an elliptic fibration. We denote by F(;.,, = X the fibre in this
fibration over the curve C;.,,. These fibres are

o smooth elliptic isomorphic with E;.,, if C(,.,, is smooth and different from
the fixed conic C, -

e of Kodaira-type I§ = D, if C;.,, = C (the central component in this fibre
lies over C while the four other components Cy, . . . , C; are the (— 2)-curves
resolving the double points of Y),

e of Kodaira-type I, if C;., is one of the three degenerate conics L, + L; in
the pencil. (We denote these fibres by D, + D; with D, the curve over L,.)

The elliptic fibration F,.,, of X admits four sections Sy, . . ., S3 lying over the
four exceptional curves Ey, . . ., E; = IP,. The images in IP, of these sections are
the four base points P, ..., P3. The section S, cuts out on each smooth fibre
F;., the point over Py, which we view as origin on the eiliptic curve F;.,,. So S,
is the zero-section. The other three sections S;, S;, S; meet the smooth fibres
F(;., in the other three branch points of the covering F;.,) = C;.,. So these are
two-torsion sections.

Translation by two-torsion sections defines a group action of Z, x Z, on the
surface X. This covers the Z, x Z,-action on IP, described above, which leaves
each conic in the pencil invariant.

A final remark: The surface X and its elliptic fibration depend on the chosen
conic C. This dependance is unwanted, but inevitable. Fortunately everything
interesting for us in the sequel will be independent of this choice.
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2 The n-torsion curve 4,

Having specified a zero-section S, for the elliptic fibration on X we can talk about
the points of order n on each smooth fibre F;.,,. On X there is a closed algebraic
curve T, for each neN, defined by two properties:

e on each smooth fibre 7, cuts out the n? points of order n,
e T, does not contain any fibre components.

The curve T, contains the zero-section Sq, and for n even it contains S,, S,, S5 too.
These two-torsion sections S; do not meet other components of T, on smooth fibres
F;.4), nor in smooth points of singular fibres (since these smooth points form
a one-dimensional Lie group [Ko, Theorem 9.1]). As the sections S; do not pass
through singularities of fibres, they form connected components of the curve T,.
We define

An:z T,,\SQ for n Odd
T\(Sou ... US3) n even .

The aim of this section is to describe the curve 4,,.

(2.1) The curve A, meets the I§-fibre over C only on its (nonreduced) central curve,
and not on the curves C;,i =0, ...,3.

Proof. We use stable reduction [BPV, I11.10]. A neighbourhood of the 1% -fibre can
be represented as the quotient of a smooth fibration by an involution, with
Cy, . .., Cs the images of the four fixed points of this involution blown up. These
fixed points are just the two-torsion points on the central fibre of the stable
reduction. Near the I§-fibre, the curve 4, is the image of the curve of n-torsion
points 4, on the stable reduction, the two-torsion sections being removed. Now
4, does not meet the central fibre of the stable reduction in points of order two, and
its image A4, < Y does not meet the blow ups Co, ..., Cs. O

It remains to describe 4, near the three singular fibres F, = D, + D; of type I,.
Recall that D, < F is the component met by the zero-section Sq.

(2.2) Near each of the two double points of F the n-torsion curve A, decomposes
n - n J—
locally into [

1 )
:l components A, j=1,..., I: , (not necessarily irredu-

cible ones) of multiplicity min {2j, n — 2j}. The intersection numbers of A with D,
and D are

(A Dy=n—2, (49-Dy=2j.

Proof. By [Ko, Theorem 9.1], the smooth points on F; form a group F} ~ C*
X Z,. Its connected component of the origin belongs to D, and contains a cyclic
subgroup Z,. This group Z, extends to a group of sections in a neighborhood U of
F,, cf. [BPV, V.9]. We form the quotient

q:U—-0Q

by the action of this group. The two singularities of F, go to two quotient
singularities of type A, -, D, goes n-to-one onto a rational curve E and Dj, goes
n-to-one onto another rational curve E’ meeting E in the two singularities.
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Next we resolve the two A4, _,-singularities of Q by inserting a string of n — 1
rational curves over each of them:

r"R-Q.

In R we have a cycle of 2n rational curves. We call them E,, . . ., E;,-;, numbered
in such a way that E is the image of E, E’ is the image of E,, and E; meets E; .,
with subscripts read modulo 2n. The elliptic fibration induces an elliptic fibration
on R such that U E; is a fibre of Kodaira-type I,,. Near this fibre, the n-torsion
curve of R breaks up into a group of sections isomorphic with Z, x Z,,.

The curve 4, U is mapped n-to-one onto a curve Q, < Q and Q,, is trans-
formed birationally into a curve R, < R.

An ? Qn =y Qr(lj) Rn =V Rr(nj)

N N N

u 4 0) — R

U U U
Dk7 Dl/‘: - Ea E’ D EOaEn

This curve R, meets the smooth fibres of R in a group Z, of points of order n. As
the n-torsion curve on R breaks up into sections, so does R,,. Only the zero-section
in R, will meet E,. This implies that R,= UR{),j=0,...,n— 1, with the
section R{/) meeting precisely the curve E,; among all E;’s. The curve R\” maps
into Q as a section Q' through E, which is the image of all the n sections in T,
meeting D,. If n is even, the curve R%? similarly maps into Q as a section meeting
E'. The sections RY for 0 < 2j < n map into Q as curves through one singularity,
and for 2j > n to curves through the other singularity.

Without restriction we now assume 0 < 2j < n and denote by 4 < U the
pullback g~ 1(Q{?) to U of the curve R\,

As the singularities on Q are rational, on a sufficiently small neighbourhood
V<R of U;‘;ll E; the divisors of meromorphic functions are precisely those
divisors which have intersection number 0 with each E;,j=1,...,n—1,
cf. [BPV, II1.3]. These functions descend to functions on  and pull back to
meromorphic functions on U.

Such principal divisors on R are in particular

2j-1 n
GIV=RYV— Y Q—KkE, GUV=RY— Y (k-2)E
k=0 k=2j+1

and there are meromorphic functions g, g’*”> on V with these divisors. They

descend to Q and pull back to functions k), h’Y) on U, both meromorphic near
one of the two singularities of F,. Locally their divisors are

(h) = 49 = 2Dy, (W) = 4 — (n = 2))- D,
This shows that the local intersection numbers are
(49 Dy)y=(n—2j)(Di- D) =n —2j, (45”+Di)=2j(Dy-Di) = 2j .

Near this point D, n D), we now linearize the action of Z,,. I.e., we choose local
coordinates x, y such that locally

D.:y=0, Dp:x=0
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and such that the group action is
(x, ) = (@x, 0" y), o=e*™".

Then k' is invariant under this action. The function f?:= y2/-h") is a local
holomorphic equation for A satisfying

flox, o™ y) =0 Yf(x, ).

Its Taylor expansion

therefore contains nonzero coefficients a,,, ,,- only for
m—m = —2j (modn).
The monomials of lowest order possible are
x""% and y¥ .
Since we know the intersection numbers (4 D,) = n — 2j and (4Y-D}) = 2j,
both these monomials in the Taylor expansion have nonzero coeflicients. So the
multiplicity of 4% at this point D, n Dy, is min{2j, n — 2j}. 0

Adding over all components AL, 0 < 2j < n, we find the intersection multiplicities
of A, with D, and Dy in each of the two double points p of F,.: For odd n

n—1)>2
(4Dy= 1434 + (-2 =""1"
, n?—1
(4p°Dp)p=24+4+ - +(n—1= 7
and for even n

n?—2n

(An'Dk)p=(An'Dllc)p:2+4+"'+(n_2): 4

Together with the intersection multiplicities in the smooth points of F; one obtains
the intersection numbers:

n—1)>2 1
(4,Dy) = 2" 2 ) ==z -1,
2
4, D) =2" ;=50 =1 (1 odd)
and
n? —2n

(4,-Dy) = (4, D}) =2 +n—z=%m2—@ (n even) |

4
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3 The modular curve Xyo(n, 2)

The following notations for modular curves seem to be standard [DR, p. 2217:

a b
Modular curve . Parametrizing elliptic curves l Group I ( d) eSL(2, Z)s.th.
c
X(n) With level-n structure I'(n) a=d=1,b=c=0(n)
Xo(n) With cyclic subgroup of order n Iy(n) c=0(n)
Xo(n) With proper n-torsion point Tyoln) a=d=1,¢=0(n)

Here X is the compactification of # /I
For n > 2 we are interested in the modular curve parametrizing elliptic cur-
ves with

—a primitive n-torsion element and
—a level-2 structure.

This curve is the fibre product of X,o(n) and X (2) with respect to the j-function
map onto the projective line. We call it

Xoo(n, 2):=Xgo(n)x P, XQ).

(3.1) If nis odd, then X o(n, 2) is connected. If n is even, then X yo(n, 2) decomposes
into three connected components, which are isomorphic double covers of Xo(n).

Proof. (a) n odd: A level-n structure on an elliptic curve E is a symplectic isomor-
phism of Z, x Z, onto the n-torsion subgroup of E. The image ec E of (1, 0) under
this isomorphism is a primitive element of order n. Each primitive a-torsion point
ecE belongs in this way to (n different) level structures. Associating the level
structure with e defines a surjective map X (n) —» Xoo(n). This induces a surjective
map of X (n)x p, X (2) onto Xoo(n, 2), and it suffices to show that the fibre product
X(n}xp, X(2) is connected.

For odd n the 2n-torsion subgroup E*" of E is a direct product of E" and E?, in
a way compatible with the symplectic forms on these groups. So a level-2n structure
on E is exactly the same as a level-n structure plus a level-2 structure. This shows
that there is an isomorphism of X (n) x p, X(2) with the connected modular curve
X(2n).

(b) n even: The choice of an element t of order n distinguishes one element 72
of order 2. Sending t +— ©"* defines a map X o(n) = X0(2). This induces a surjec-
tive map

Xoo(n,2) = Xgo(n) X p, X(2) > X¢0(2) x p, X(2) .
There are three different maps over Py of X(2) onto X4(2). The fibre product

X00(2) x p, X(2) therefore decomposes into three copies of X (2). Then our curve
Xoo(n, 2) decomposes into three curves, which are isomorphic double covers

Xoo0(n) X x,,0 X (2)

of Xoo(n).
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Multiplication by g defines a canonical map X(n) —» X(2). Combining it with

X(n)—> Xoo(n) we get a map of X(n) onto a connected component of the
fibre product Xgo(n) x x .2 X(2). There are n distinct level-n structures mapping
on the same primitive n-torsion point e€ E. One half of them defines another
level-2 structure on E as the other half This implies that the connected
component mentioned has degree two over Xgo(n). So the double cover
Xoo(n) X x,,2 X (2) = Xoo(n) is connected. The curve Xoo(n) therefore consists of
three connected components. ]

(3.2) For an odd prime p

genus(Xoo(p,2)) = (p — 3)%.

Proof. The maps j: X(2) > P, and j: Xoo(p) — IP; are of degree six and (p — 1)2/2.
Their branching patterns are:

XX Epyc gRy
Faoo T AT % Ixa
e 0 1728 o T s = 3 1728

X(2) Xoo(3) Xoo(p),p >3

8|I%‘%

Over the points 0 and 1728 this follows by counting fixed points for the automor-
phisms of these curves among all primitive n-torsion points. Over oo this can be
deduced from [BPV, p. 155]: Locally near oo there exists a universal family of
elliptic curves. The j-function has a simple pole, so the singular fibre here is rational
with a node. Near oo the period lattice is of the form

ZG—)Z-—]—_ln(z).
2ri

The monodromy on n-torsion points can here be traced easily. We can write the
lattice points in a fibre as (a, b) such that this monodromy is (a, b) — (a + b, b).
Using the rules

-
e - X0eX
€

X .
X ”{X“"X“ {X
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we find the branching pattern for Xqo(p, 2):

2p-1) }2,,
pz—l% Wz;llx 2 %
= ¢

0 1728 o0

1
3t

Using the genus formula for this branching pattern we compute
29-2=-230" - D+ =D 2+3(* - D+3p-D-Qp-D+3(p-1)
= =3~ D+3-p-(p—1
3+(p* — 6p +5)
+(p*—6p+9)
z(p—3)%.

I

In principle it is not difficult to compute in this way the genus of Xqq(n, 2) for
arbitrary n. The problem is, that the prime decomposition of n makes the branching
pattern over o0 somewhat complicated. So we only consider two examples, n = 8
and n = 12.

The case n = 8. The degree of the covering X4((8, 2) = IP, is
1.8y =31.3.24=24 .

Over 0 there lie eight triple points, and twelve double points over 1728. We write
the primitive 8-torsion points as pairs (a, b)e Z§ with ged(a, b, 8) = 1 such that the
monodromy acts by (a, b) — (a + b, b). Under monodromy they form the follow-
ing orbits (in brackets):

ja
1,3,57
0,1,2,3,4,5,6,7)
1,3,57
©0,1,2,3,4,5,6,7)
(L,s), 37

BHW N = Ol

After quotienting out by the involution we obtain the following orbits
Number: |2 t 1 2

1 2 48

Length:

and the covering has the following branch points:

Number: (48 | 72|12 6 12

j *01728ioo
Order: | 3 21 2 4 8
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This implies for the genus of the total curve
2g—2=—2-144 +48-24+72+12+4+6-34+12-7
=6 (—48+16+124+2+3+14)
=—6.
So the three components of X,(8, 2) are rational.
The case n = 12. The degree of the covering X,(12, 2) — IPy is
11(12) =422 — 1)22.(32 — 1) = 48..

Over 0 there lie 16 triple points, and 24 double points over 1728. Writing the
primitive 12-torsion points as above the points of order eight, we have the
following orbits (in brackets) under monodromy:

a

1,57, 11

0,1,2,3,4,5,6,7, 8,9, 10, 11)
(1,3,5,7,9, 11)

(1,4,7,10),(2, 5, 8, 11)
1,5,9), (3,7, 11)
©0,1,2,3,4,5,6,7,8,9, 10, 11)
(1,7), (5, 11)

N AW N = O

As we quotient out by the involution (g, b) > (—~a, —b), there remain the following
orbits

Number: |2 1 2 2 1 2

123 46 12

Length:

So the covering has the following branch points:

j 011728 | %0

Number: 96\ 144 {12 12 12 12
Order: 3 2\ 2 4 6 12

and the genus for the curve of three components satisfies
29 —2=~—2-288+96-2+ 1444+ 12-(1+3 +5+11)
=12-(—48 4+ 16 + 12 + 20)
=0

The three components of X4(12, 2) are elliptic.

Let us denote by 4, < 4, the closure of the set of those points, which on their
fibre are primitive n-torsion points. Then the universal property of the modular
curve Xo(n, 2) defines a morphism

normalization(4;) - Xyo(n, 2) .

(3.3) This morphism is a double cover, identifying each point in A, with is inverse
(w.r.t. the addition on F;.,), if the point lies on the smooth fibre F;.,,.)
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Proof. 1t suffices to prove the assertion outside of the singular fibres F;.,,. Points
in 4, on different fibres have different images in X o(n, 2), because if two different
fibres are isomorphic, they will differ by their level structure, cf. (1.1). Two points on
the same fibre F;.,, with the same image in Xo(n, 2) are equivalent under an
automorphism of the elliptic curve F;.,. In general this automorphism can only
be + identity. O

4 The plane curve 17,

We define the plane curve
II,= (yty1) 4, = P, .

On each smooth fibre F;.,, the restriction of yt,7, is the quotient map with
respect to the (— 1)-involution. This shows that 4, — I1, is a double cover. In fact,
on the part of 4, belonging to smooth fibres this is the map from (3.3). So, if we put

I = (ytat) A, = 1,
then:
(4.1) The plane curve II, is a birational image of the modular curve X yo(n, 2).

There is a formula for the equation g, of I1,, cf. Sect. 5. In practice this formula
seems however too complicated to be evaluated by hand. We want to compute the
equation in the first few cases in another way. So we collect first a few simple
properties of I1,. They determine its equation uniquely for low n and make it easier
to calculate g,.

In (2.1) we observed that A, does not meet the curves C;,i =0, ...,3. This
implies that II, does not pass through any base point Py, . . ., P5. So II, meets the

2 2

. . n o . n L
smooth conics C; ., In 5 points, if n is odd, and in 5 2 points, if n is even.
This gives the degree

dog(lT,) - {(rﬁ —1)/4 if nis odd

n?/4 —1 if nis even .

Let us denote by 2, = PGL(2, €) the symmetric group generated by permuta-
tions of the four base points P, = (£ 1: + 1: + 1). It contains the subgroup

ZoXZy:(xg:x:X2)> (£ Xxp: £ x50 £ X,).

The fix-group of P, is a copy X5 of the symmetric group permuting the three base
points Py, P,, P53, or, the three coordinates.

We saw already (Sect. 2) that the map X — IP, is equivariant for Z, x Z,.
Unfortunately the 2;-symmetries do not lift to X, because they would move the
singular fibre of type I

(4.2) a) For all n > 2 the polynomial g, is symmetric in the three coordinates.

b) If n > 2 is even, the curve II, is invariant under X,. Its equation g, then is
a symmetric polynomial in the squares x3, x?, and x3, or such a polynomial times
XoX1X2. (Of course in this case g, has odd degree.)
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Proof. We observed already that the elliptic curve Fy;.,, depends only on the
position of the base points on the conic C;,,), not on the particular surface X, ie.
not on the choice of the branch conic C. The same of course holds for the
intersection of IT, with C,.,). Any ¢ €25 transports the images of torsion points
over C;., to those on ¢(Cy;.,). This implies ¢(II,) = I1,. Each S;-symmetry
therefore multiplies the polynomial g, by + 1. The multiplier —1 is impossible,
because, this would imply that IT, would pass through the base point Pq = (1:1:1).

If n is even, the n-torsion subgroup on the elliptic curve is unchanged when
the origin is replaced by a nontrivial element of order two. Addition by one of the
three nontrivial two-torsion sections S;, S,, or S; induces on IP, an involution
(xp:X1:X3) > (xo: + X;: &+ X,). This symmetry therefore multiplies the equation
g, by + 1. If we have + 1 here, g, is a polynomial in the squares x3,x?, x3. If we
have — 1, the polynomial g, is a sum of expressions

x5 x5 + xBx§ x4 + x5 x4 x5 + x8x{xb + x5xh x% + x§x§ x5
with odd exponents a, b, c. O

The four-torsion curve II, is easy to find: The four-torsion points on
F 4., having as square the intersection points F;.,,n S, m = 1, 2, 3, are exactly
those points, which under addition with S,, go to their inverses. Their images in P,
are the fixed points for the involution belonging to S,,, i.e. a coordinate line. This
already describes

H4:x0x1x2 =0.

The singular fibres F;, = D, + D; are mapped onto line pairs L, + L;. Their
equations and intersections are

k| L L, Intersection
01 x;=%, X1 =~ X3 (1:0:0)
1| Xp=Xx3 Xo=— X3 ©:1:0)

2| Xg=X; Xo=— X1 0:0:1)

The two double points of the fibre F, both are mapped onto the intersection point
of L, and L;. Since the map yz,t, is etale near these points, the local branches
A% map isomorphically onto (not necessarily irreducible) branches 1T\ of I1,
having the same multiplicities as 44", and the same intersection numbers with L,
and Lj as A4 with D, and D;:

n | Degree of I, | Branches | Intersection with L,,L, | Multiplicity
Odd (n? — 1)/4 m-0D20n=1,3n=3),...,(n—2,2)| (n* ~1)/8
=0 mod 4| n*4—1 n2—1 | @n—2,4n-4,....n—221 n*8
=2 mod 4 » N ” (n? —4)/8
A branch 47 with intersection numbers 2j, n — 2j by 2.2 has a local equation
a-x¥ +b-y""¥ 4 -.-=0, so it is tangent to one of the curves Dy, D; unless
n=2j.

Since the singularities of IT, are concentrated in the coordinate points, the curve
simplifies under the standard Cremona transform

(X0:X1:X3) = (X1 X2: X2 X0 X0 X1)

II, — Crem(I1,) .
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This Cremona transformation is equivariant for the symmetry group Xy, so
Crem(IT,) has the same symmetry properties as the curve I1,.
One easily computes

degree(Crem(I1,)) = 2-degree(Il,) — multiplicities in the coordinate points
and finds

n l Odd =0mod4 =2 mod4

n?—1 n? n? 1

— =2 _— -

deg(Crem(I1,
g( (1)) . g s 2

(Of course, this holds only if IT, does not contain coordinate lines, i.c. for n £ 4.)
For the computations we use the following symmetric polynomials

S =Xp + X1 + X3
S; = XgX1 + XgXz + X1 X,
S3 = XgX1X3 .

Then the equation for Crem(II,) is a symmetric polynomial f, (s;, S5, 53} of
total degree d. We collect some of its properties:

(a) Intersection with L;, n odd. The line L;, is invariant under the Cremona trans-
formation. The coordinate point L, ~ L; is blown up and mapped to the opposite
coordinate line x;, = 0. The restriction of g, to L; vanishes only at L, n L;, so f,| L
vanishes only at the intersection of L; with the coordinate line, which coincides
with the intersection of L; with the line s; = 0. Since the union Ly, u L, U L, has
equation

(xo + x1) (x0 + x2) (x1 + Xx3) = 515, — §3,

we find

Juls1, 82, 83) = 5§ + (5152 — 53)* pa-3(51, 52, 83) -
Here d = deg(Crem(I1,)) and p,.. 5 is some symmetric polynomial of degree d — 3.

(b) Intersection with L. Just as Ly, the line L, too is invariant under the Cremona
transformation. The intersection points of 7T, with L, outside of the coordinate
point L, n L; are the images of the n — 1 (resp. n — 2, if n is even) nontrivial
n—2
2
L,n L, and f,| L, has the same number of zeros outside of the coordinate line

n-torsion points. So g,| L, has (n — 1)/2 <resp. ifnis even) zeros outside of

-2 . .
z;, = 0. The polynomial h, of degree (n — 1)/2, resp. n—z——, vanishing in these points

can ~ in principle — be computed:

Consider the line Ly:x; = x,. Introduce homogeneous coordinates u:v on Dy
such that u-v vanishes on the two intersections of D, with Dj, and such that
(u:v) = (1:1) is the origin Dy N So. The map Dy — Ly is given by

Xo=u?+1v% x,=x,=2-uv.
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The nontrivial n-torsion points on D, are the roots of

U — "

=u"‘1+u"_lv+--' +Un~1_
u-—v

Writing this as polynomial in x, and x; gives for odd n e.g:
hy = xo + 3x;
hs = x§ + Ixox; — 3 x{

hy = x3 + 3x3%; — ¥ xox7 — x7

2
1

B

1

3 4
XpX1 + 16 X7 -

he = x§ + 3 x3x; — 2x3x

For even n the polynomial f, | Ly has g — 1 zeros outside (0: 1: 1), the images of

the n — 2 points #+ + 1 of order n on Dy. The equation for these zeros is obtained
by expanding

un_vn
u2 - UZ — (u2)n/2—1 + (uZ)n/2—3UZ 4o (02)"/2_1

in xo and x;:

_ .5 3.2 , 3. 4
hi2 = xg — X5Xi + 16 X0 X7 -

This polynomial #,(x,, x, ) vanishes on the intersection of L, with IT, outside of
(1:0:0) and — after the Cremona transform — h,(x,, x,) vanishes on the intersection
of Ly with Crem(I1,) outside of the line x, = 0.

(c) Intersection with coordinate lines. A branch IT{/ of I1, at (1:0:0) with intersec-
tion numbers (IT$"- Lo) = n — 2j, (IT{Y+ L) = 2j goes under the Cremona trans-
form to a branch with intersection numbers

-LO l Lb ]X(J:O!
0 2j
4j—n| n—2

n — 4j
0

(4j <n)
@j>n

So Crem(I1,) meets the coordinate line x, = 0 at its intersection (0:1:1) with L,
with multiplicity

(n — 1)(n + 3)/16 |

= ] (P — 416 . )
1;%2’_"“‘“)" (n+ 1~ 3)/16 ifn=4k + ;
4.

n(n — 4)/16
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And at the intersection (0:1: — 1) with the line L the multiplicity is

k—1

n = 4k: S (mn—=2)=Y @k—2)=k(k—3)  =n(n—4/16
k<j<} j=1
k

n=4k+1: ¥ (n—2)=Y (2k+1-2)=k? =(n— 1)?/16
k<j<% i=1
k

n=2k+2 Y (n—2)=7Y Qk+2-2)=k(k+1) =(n*>—4)/16
k<j<t i=1
k+1

n=4k+3 Y (n—2)=Y Q@k+3-2)=(k+1)> =(n+ 1)?/16.
k<j<% j=1

For odd n the two intersection numbers with the coordinate line add up to
deg(Crem(I1,)) = (n*> — 1)/8. Since the three intersections of the lines L, with the
coordinate lines x;, = 0 are on the line s, = 0, and since the conic s — 4s, =0
touches the coordinate lines at their intersection with L,, the curve Crem(I1,)
intersects the coordinate triangle s; = 0 as the curve s7 - (57 — 4s,)™ = 0, with m;
and m, the intersection multiplicities of Crem(I1,) with the coordinate lines just
computed. We conclude

fom sy gaa ASET T ds) RO (= 1)
n 3 a-3 S(1"+ 1)2/16_(5% _ 432)(n+ 1)(n—3)/32 n= 3(4) .

(d) Intersection with the line s; = 0 (n > 3). The first equation we determine below
will be f = s,. The curves Crem(I1,), n > 3 do not meet Crem(I1 ;) outside of the
coordinate lines. By X';-symmetry, the intersection multiplicities at the three points
of intersection are equal. Hence Crem(/1,) cuts out the same divisor on the line
sy = 0 as the polynomial 543, where d:=deg(Crem(I1,)). This implies

o=+ s1ra-1(x0, X1, X3) .

Now we determine the polynomial f, in the few cases. For polynomials
depending only on the squares of the coordinates x,, x{, X, we abbreviate

oy=x5+xt+x%, o= x3x} 4+ xExE + xIx3, o3=x3xIx%.

The case n = 3. The symmetric polynomial f; is linear, so f3 = 5.
The case n = 5. The symmetric polynomial f5 has degree three. We have

fs =51+ a(s,5, — 53),aeC, (@

=53 + 51(52 — 4s3),ceC, (o).
This implies a = —c = — 4. So
fs =51 — 4515, + 4s3
=x3+x3 4+ x3 —(x3x, + -+ x1x3) — 2x0x1 X3 .

This is the equation of a smooth cubic. The curve X4 (5, 2) has genus one (cf. 4.2).
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The case n = 6. The curve Crem(I1¢) has degree four, it contains Crem(I75), and it
is invariant under sign-changes of the coordinates. This implies

Jo = (xo + x5 + x2) (X0 + X1 — X2) (Xo — X1 + X2) (—Xo + X1 + X3)
= x¢ 4+ xt + x3 — 2(x3x} + x3x3 + xix3)
=01 —40,.
After dividing by —s;, the equation for Crem(I13), we find
Jo = —(s1 — 2x0)(s1 — 2x4)(s1 — 2x3)
=53 — 45,5, + 8s5.
The case n = 7. The symmetric polynomial f; has degree six. We know
fr =58 4 (515, — 53)"p3 (a)
=53-q3 + sT(s] —4s;)  (c) .
This implies p; = — 4s3 + ¢s3, ce C. Thus
f2(1+ 2%, 2x + x%, x2) = (1 + 2%)% + 2x + 4x? + 2x3) (— 4(1 + 2x)* + cx?)
=(1+2x)°+2x-{ —4—32x + (— 100 + ¢)x?
+ (=152 4 2¢)x® + (— 112 + ¢)x* — 32x%)}
is a polynomial of degree three, hence ¢ = 112 — 6-2* = 16. We computed
f7 =58 + (5152 — 53) (— 4s7 + 16s3)
= 58 — 4sts, + 4s3isy + 165,5,53 — 1653
=x§+ x$ + x5 +2(x3xy + - +xx3) — (xx + - + xixd)
—4(x3x? 4+ x3x3 + x3x3) — 2x0x1%,(x3 + x3 + x3) + 2xFxix .

One checks that the curve Crem(/1,) has two double points on each coordinate
line. E.g. on the line x, = O these are (0:1:1) and (0: 1: — 1). In the latter point one
branch of the double point even has threefold contact with the coordinate line.

The case n = 8. Crem(ITg) is a curve of degree six. By (4.2),b its equation fg is
a symmetric polynomial in x3, x%, x3. We put

fs(x0, X1, X3) = ac} + boy0, + co5 .
By (b) its restriction to L
fo(l, x, x) = a(l + 2x%)* + b(1 + 2x%) (2x* + x*) + ex*
= (8a + 2b)x5 + (12a + 5b + c)x* + (6a + 2b)x* + a
is a polynomial of degree < 3, hence
a=1,b=—4,c=8.
We computed

fo =01 — 40,0, + 80,

i

(x3 + x? 4+ x2)% —4(x3 + x} + x3)(x3x? + x&x% + xIx3) + 8x3x%x3

=x§ 4+ x$+x§ —(dx?+ -+ xix3) + 2x3xIx3

~ (g + xi = x3) (6§ — xi + x3) (= x5 + x} + x3) .
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The case n = 9. The polynomial fy has degree ten and splits off the linear factor
f3 = sy. We write fo = s, fo with
fo =53 4 (5152 — 53)(as$ + bsts, + csisy + dsisd + es;sy53 +fs3 +9s53)  (a)
= 53(s? — 4s,) + s3(a’s8 + b'sts, + ¢'sPss + d'sts3
+e's;sy53 +f's3+4g's3) (o).
This implies a = — 12, b=48,d = — 64,and f=0, so
fo =57 + 53(sy53 — 83)(— 125t + 48s%s, + 64s3)
+ (5155 — 53)85(¢s? + esys; + gs3) .
This polynomial restricts to L; as
folLe = (1 + 2x)° + (1 + 2x)* (2x + 4x* + 2x3)
= 12(1 4 2x)* + 48(1 + 2x)*(2x + x?) — 64(2x + x?)?)}
4+ (2x + 4x2 + 2x3)x? - {e(1 + 2x)% + e(1 + 2x)(2x + x?) + gx?}
=1—6x+ (136 + 2c)x> + (256 + 16¢ + de)x*
+ (128 4 50c + 18e + 2g9)x> + (256 + 76¢ + 28¢ + 4g)x°
+ (512 + 56¢ + 18e + 2g9)x” + (256 + 16¢ + 4e)x®

All terms of degree = 4 should vanish, hence ¢ = — 64, e =192, and g = — 192.
We computed

fo =57 + (5152 — 53) (— 1259 + 48sts, — 64535y — 645753 + 1925, 5,53 — 19253)
=87 —3:2%575, + 3:2%5%sy + 324353 — 7-2%sts,s;5
+ 205353 — 205353 + 28525355 — 3-27sy5,5% + 3-28s3 .

The case n = 10. The curve Crem(II,,) has degree twelve, it contains Crem(J15),
and it is invariant under sign-changes of the coordinates. This implies

Ffro =103+ x3 + x3 — (xBx; + x3x, + xoX7 + x3x; + XgX3 + X1 X3) — 2xX{X3) .
(e + x3 — x3 — (x3x; — x3x2 + xoxT — xIx; + Xox3 + X1 X3) + 2X0 X X;) .
(3 — x3 + x3 — (= xBx1 + x3x5 + xoxT + xTx;5 + XoX3 — X1 X3) + 2Xo X1 X;) -
(— x5+ x} + x3 — (xBx; 4+ x3x; — Xox3 + x2x3 — XoX3 + X1X3) + 2XoXyX;) .

or

2

flo =TT (53 — ds155 + 853 + xi(s3 — 25,) — 2xF) .

k=0
The case n = 11. We did not manage to compute f;;. It seems, the properties
collected so far do not determine the curve Crem(I7,,) uniquely.

The case n = 12. The polynomial fi, is of degree 16. Fortunately it splits off f¢ as
a factor. We write f, for the polynomial f;,/ fs. This polynomial of degree twelve
is symmetric in x3, x2, x%. So

fi; = acS + bota, + coloy + dotal + eq 0,05 + fo3 + go3 .
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By (b) this polynomial restricts to Lo as

hiy(x, 1) 16x° —16x3 + 3x ,
= 3 =4x* 3.
he(x, 1) 4x° — x

Evaluating the linear conditions imposed by this equation we find
a=—3,b=20,c= — (160 + 4d), e = 672 + 184,
f=~(128 + 4d),g = — (944 + 27d) .

Unfortunately there is the free parameter d not determined yet. We restrict this
equation to the line x4 = 0:

—3(x% + x3)® + 20(x} + x3)*xIx3 + d(xIx3)?xtx3 — (128 + 4d)x$x$
= ((x} + x3)® — 4x}x%) (= 3(x} + x3)* + 8(x} + x3)*xix3 + (d + 32)x}x5 .
By (c) this polynomial should split off the square of
(x1 + x3)% —dxixd = (xf — x3)*.
This now determines d = — 16 and we have
fiz = —36%+5-226%t0, — 3:2%0305 — 2*¢30% + 3-2706,0,05 — 2%03 — 2°63 .

From Sect. 3 we know that this curve splits into three elliptic quartics, but we did
not try to find their equations.
The curve Crem(I1,) is Cremona-transformed back to I, by the substitutions

S1 583, Sy > 8183, 53'—*5§-

The equations obtained are given in the following table:

gz = Sz
g4 = 53
gs = — 4515,5; + 53 + 4s3

g6 = 03 — 40,03
g6 = n(sz — XXkt 1)
g7 = — 4s;15%s3 + 165,555 + 55 + 45353 — 1655
gs =s3+(— 40,0,03 + 03 + 803)
gs = (x3x} + xgx3 — x1x3) (x§x? — x§x3 + xix3) (— x§xi + x3x3 + xix3)
go = —2%-5353s3 + 3-2%.525353 — 3.2%-5,5)55 — 7-2% 5,5%s3
+ 28525254 — 3.27.5,5,53 + 55 +3-22-5853 + 26.535% + 3-28.58

gio = l—l(‘ 4-5y5753 + 53+ 853 — XX 1245153 — 53) — 2. X2 xp4y)
k

gis = —2%-0303 - 2% 0203063 +5-2%-0,0%05,+3:27.6,0,05 — 365

—3.2%.030% - 2°.6%.
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5 Poncelet polygons

The double cover E;.,) — Cy;.,y from Sect. 1, branched over the base points
Py, ..., P3, has a geometric interpretation in the plane IP,: We fix a smooth conic
C # C(;., in the pencil and consider pairs x, L where xe C;.,, and L is a tangent
line to C through the point x. Since the general point x € C(;.,, admits two tangents
to C, the projection (x, L)+ x is a double cover of C;.,,. It is branched precisely
over the four base points, because at these four intersections xe Cy;.,, n C the two
tangents from x to C coincide.

It is easy to check, e.g. by explicit equations, that these pairs (x, L)e C(;.,,x C*
~ P, xIP, form a smooth curve (of bidegree (2, 2)), if both conics C;.,, and C are
smooth. So this double cover of C;.,, is an elliptic curve isomorphic with E; ;.
Poncelet’s theorem is proved easily using this double cover (cf. e.g. [GH]):

With each pair x, L€ E;.,, we can naturally associate another such pair x’, L',
where x’ is the ‘second’ intersection of L with the conic C;.,, and L’ is the ‘second’
tangent to C through x’. One checks, that this map (x, L)+ (x’, L) has no fixed
point on the elliptic curve E; ., hence it is a translation on this curve. (The inverse
of this translation is the map x, L — x”, L” with L” the second tangent through
x and x” the second intersection of L” with C(;.,.) If there is a Poncelet n-gon
circumscribed about C and inscribed into C; ), then this translation is of order n.
And if the translation has order n, then its application to an arbitrary pair
x, Le E;.,,) yields a Poncelet n-gon. This proves

Poncelet’s theorem. Ifthere is one n-gon circumscribed about the smooth conic C and
inscribed into the smooth conic C(;.,,, then there is an infinity of such n-gons.

We endowed the elliptic curve E;.,, already with an origin, the point over Pg.
The Poncelet translation described above maps this point to the pair P, T where
T:=Tp,(C) is the tangent to C at P, and P is our control point

P= TPo(C)m C(A:u)

on C;.,), the second intersection of this conic with T. Clearly, the Poncelet
translation is n-torsion if and only if the point P, Te E;.,, is n-torsion, i.e., if and
only if the control point P belongs to the curve I1,. This is the essential new, however
easy observation of our paper.

{(58.1) A smooth conic C in our pencil is n-inscribed into the smooth conic D in the
pencil if and only if the control point P = D n Tp (C) belongs to II,.

Of course the meaning of n-torsion is a little ambiguous. If it means primitive
n-torsion, i.e., if a Poncelet triangle is not counted as special form of a Poncelet
hexagon, then in our statement the curve I1, should be replaced by I, < I1,, where
all curves I1,, k|n, are removed.

Griffiths and Harris [GH] used a formula of Cayley to put the condition that
D be n-circumscribed into the form of a symmetric determinant: Take one indeter-
minate ¢ to write in form of a power series

det(¢tD + C)

=14+ At + A, 1% + .
det(C) At At
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Then D is n-circumscribed about C if and only if

Ar o A

det| C =0, (=2m+1)
Am+1 A2m
Ay Ay

det : : =0, (n=2m) .
Am+1 AZm—l

This determinant gives the equation f, of our curve II, in the following way:
A point x = (xq:xy:x,)elP, lies on I, if and only if the conic
xt —x3
D= x3 — x3
xg — xi
in our pencil, passing through x, is n-circumscribed about the conic

X; — X
C= Xy — Xg
Xo — X1
which is tangent at Py to the line T joining x with Py. Then
det(C) = (xg — x1) (%1 — X3} (X3 — X¢)
det(tD + C) = det(C) + t-det(C) - {(xo + x1) + (x1 + X3) + (x2 + x0)}
+ t2-det(C) - {(xo + x1) (X1 + x3) + (X0 + x1)(x2 + Xxq)
+{x; + X3)(x2 + Xo)}
+ 3. det(C) - (xo + x1)(xy + X2)(x2 + Xo)

th%((;D)z L4 6225+ 12(s7 + 52) + 13- (5152 — 83) .
In particular we find
A =54
Ay =35,
Az = —738;

_1 12
Ag =755 —§53.

This gives the right polynomial f, for n < 5. In the computation of the A4, lots of
cancellations take place. The higher order computations are for symbolic manip-
ulation on the computer. So we did not try to evaluate this formula further.
However, since all coefficients in the power series expansion are rational, we deduce
from it:

(5.2) The plane curve I1, is defined over the field of rational numbers. Its equation f,
can be chosen with integer coefficients
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If we fix C in our pencil, then the intersections x of IT, with the tangent T'to C at
P, determine all the conics C; ., in the pencil n-circumscribed about C. As I1,, does
not pass through the point P, the general line T through this point does not touch
I1, in its points of intersection with this curve. Then T intersects I, in precisely c(n)
points. This shows

Theorem 1. Let {C;.,,:(A:n)eP,} be a pencil of plane conics with four distinct
base points. For the general conic C in this pencil there are c(n) different conics
C,. 2y in the pencil n-circumscribed about C.

As I1, does not pass through any of the four base points, the general conic in the
pencil does not touch IT, in its points of intersection with this curve. The lines
T connecting such a point with the origin P, are all distinct and therefore tangent
to as many distinct conics C in the pencil. This proves

Theorem 2. Let {C;.,,:(A:p)€P;} be a pencil of conics as in Theorem 1. For the
general conic C;.,, in this pencil there are precisely 2-c(n) different conics in the
pencil n-inscribed into Cy;. .

6 Simultaneously inscribed and circumscribed conics

First we introduce an involution f of the plane. Two points x and ye P, are in
involution under I if

1. x =T C, where C is a conic in the pencil and T a line through Py,

2. y=T*C* where again C* is a conic in the pencil and T* a line
through P,. .

3. C* is tangent to T and T* is tangent to C at Py.

(6.1) The involution I is the Cremona transformation

Yo =X + X3 — X3 + XoX1 + X1 X3 + XoX; ,

Vi = x5+ x3 — x4+ xoX; + X1 X, + XXz ,

Y2 = X§ + X7 — X3 + XoX; + X1 X2 + XoXz ,
based on the three points P, P,, P of the pencil different from P,.

Proof. The point Py = (1:1:1) is a fixed point of the Cremona transformation
(x0:x1:Xx2) = (yo:y1:¥,). Each conic in our pencil therefore is transformed into
a line through P,. All we have to show is that at P, the conic and this line are
tangent at to each other. But let

oxg + fxy +9x,=0, oa+pf+7y=0,
be a line through Py. Its transform is the conic
(B+y—w)xf+ (v +oa—B)xi+ @+ B —y)xf=—2wxf + fxi+9x3) =0.
(i

Next we define the curve I1.* := [(il,) < IP,. It is a birational image of I1,,. Since
IT, does not pass through the three base points of the Cremona transform I,
we have

deg(I1¥) = 2-deg(I1,) .
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We are interested in IT;} for the following reason: A control point
P =DnTp,(C)ell,is mapped under I to a point P* = Tp (D) C. The roles of
the conics C and D are interchanged. If we use Q = P* e [T} as control point, just as
we did before with points in IT,, we get a pair C, D in the pencil such that D is
n-inscribed into C.

(6.2) The curve IL} is the locus of points Tp,(C) D where C and D belong to the
pencil such that D n-inscribed into C.

This is nothing sensational, but for the points in the intersection IT, N I1}.
These points parametrize pairs C, D of conics in the pencil such that simultaneously
C is n-inscribed into D and D is m-inscribed into C. Quite amusing situations — they
lead to pairs of elliptic curves, whose mutual relation seems interesting to us,
although we do not understand it at the moment.

The curve 11, is singular only in the three coordinate vertices. They lie on the
fundamental lines x; = - x; of the Cremona transformation I and are transformed
into the three base points. Therefore

(6.3) The curve I1} is singular only in the three points P, P,, P;y. It does not
intersect the three lines x; = — x; but for these three singularities.

This means that curves IT,, and IT} never intersect in points which are singular
on one of them. So

deg(Il,,)- deg(I1,})

is the number of their smooth intersection points, counted however with the order
of contact as multiplicity. As we are unable to show that these intersections are
always transversal, we refrain from giving a detailed statement.

(6.4) There is a one-to-one correspondence between equivalence classes of

— pairs of smooth conics C, D = P, having four distinct intersection points, such
that C at the same time is m-inscribed into and n-circumscribed about D (equiva-
lent under the projective group;)

— orbits of points xeIl, " I1}, not on a line L; (equivalent under the symmetric
group) Xs.

Proof. Given a pair C, D as in the statement, there is a projective transformation
mapping their four intersection points onto the four points (1: + 1: + 1) and the
two conics onto conics in our pencil. Since C is m-inscribed into D, the tangent T to
C at P, intersects D in a point xeIl,. Since C is n-circumscribed about D, the
tangent T* to D at Py, meets C in a point yeIl,. The involution I maps y onto
x showing that xeIT,, n 1T},

The projective transformation above is unique up to X,-symmetries. Distin-
guishing the origin Py, = (1:1:1) we have Z;-symmetries only. This proves the
bijection in the statement. O

If we intend n-gons in this statement to be primitive, the curve I, has to be
replaced by 17, and I1;¥ by the curve I(I1,,). Their intersection number is

2-c(n)-c(m) .
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If there is no fixed point for X3 among the points of intersection of these two curves,
then 4. c(n)- c(m) is the number of orbits. There are three types of fixed points:
the fixed point P, = (1:1:1). It does not lie on any curve II,.

the orbit of two points (1:w*:w*), k = 1, 2, with w a primitive third root of
unity. These two points lie in IT; N 1T, see the following example.

the points on the lines L, and L;. The curves IT, and IT} never meet on L;, but
L, might contain intersections of IT, and IT}. For these points the conics
degenerate however.

The intersection IT, ~ I1} contains at most 2-¢(n)-c(m) points. The number
shrinks perhaps, if we remove points on the three lines L, k = 0, 1, 2. There remain
at most 1. c(n) - c(m) orbits of points in this intersection, unless n = m = 3. In this
case one orbit consists of three points, and the computation in the first example
below shows that there is another additional orbit. This proves

Theorem 3. Each smooth conic in the plane W, is (up to projective equivalence)
simultaneously n-inscribed into and m-circumscribed about

2 fm=n=3
<%c(n)ec(m) if morn>3
conics D (meeting C in four distinct points).

We don’t know if there are more general properties about the intersections
II, nI1F which can be proven in this context. So we conclude by computing
explicitly the simplest examples. First we need the transforms of the symmetric
polynomial s, under I. Abbreviating

p=si—s;,
the Cremona transformation I is written
Be=p—2x;, k=0,12.
Therefore
I:sy— s%:=3p2 — dp(s? — 2s5,) + 46, = — 5t + 6575, — 85,55 — 53 .

The case (m, n) = (3, 3). The points in I1; ~ IT¥ are defined by s, = s¥ = 0. This is
equivalent with

s, =5.(853 +53)=0.

Now these equations are solved elementarily. We find the following eight points

1+\/g ’. 1_\/§>
S :

@ a primitive third root of unity, y:= 5

— The two points (1:0*:@?*), k = 1, 2.
— The orbit of (1:#:#1") under S;.

The case (m, n) = (4, 3). The curve I1, splits into the three coordinate lines x; = 0.
The intersection of IT¥ with the line x, = 0 is

(X1 + x2)* = 6(x; + x3)2x1x; + (x; %) =0.
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Again this is solved elementarily to give

(Xo:%1:X) =(0:1 + 24/ —1+2/2:1+/2— /= 1+22).

Here x; and x, can be permuted. For \/5 we have two signs, but in the same point
the same sign must be taken.

The case (m, n)} = (3,4). We just Cremona transform the points from the last case
under I. We have

51:X1+XZ=2+2\/§

Sy =X1X3 =4
p:sf—s2:8+8\/§

X}P=2442+02+22)/ -1+22

X3=2+4/2-2+2/2)/-1+22.

So the transforms are

o:y1:y2) =(2:/2 =1+ /—1+2/2:/2-1—/—1+2/2).
The case (m,n) = (4,4). The line x, = 0 transforms under [ into the conic
—x3 4+ X2+ x3 4 XoX1 + XoXz F X%, =0

The curve I'¥ therefore consists of the three transforms of this conic under the
symmetric group X3. The intersection of this conic with the line x, = 0 is the pair
(0: w*: w?*), k = 1, 2. The intersection with the line x, = 0 is the set of two points
(1:0:x) and (1:0:1").
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