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Angle Bisectors in a Triangle
I. F. Sharygin

In this article, we have collected some geometric facts which are directly or tan-
gentially related to the angle bisectors in a triangle. These results vary from easy
lemmas to serious theorems, but we will not classify them ; rather, we will just
number them. Every statement that occurs without a proof is considered as an
exercise for the reader. In fact, even the presented proofs are rather concise, which
allows the reader to fill in the details.

Everyone should know this

Let us first recall some standard notation : let ABC be the given triangle, SABC
is its area, |BC| = a, |CA| = b, |AB| = c, 2p = a + b + c, O and R are the
circumcentre and the circumradius, I and r are the incentre and the inradius.
Furthermore, the triangle has three excircles, each of which touches one side of a
triangle and the extensions of the other two sides. Their centres and their radii will
be denoted by Ia, Ib, Ic, ra, rb, rc (Ia denotes the centre of the excircle touching
the side BC and extensions of the sides AB and AC with ra being its radius).
Further notation will be presented as needed.

1. Suppose the internal bisector of ∠A intersects the side BC at a point A1. Then

|BA1|
|A1C|

=
|BA|
|AC|

=
c

b
.

2. Suppose the external angle bisector of ∠A intersects the line BC at the point
A2. Then

|BA2|
|A2C|

=
|BA|
|AC|

=
c

b
.

3. SABC = pr.

4. SABC = (p− a)ra.

5. Let M be the point of tangency of the incircle with the side AB. Then |AM | =
p− a.

6. Let M be the point of tangency of the excircle with the centre Ia and the line
AB. Then |AM | = p.

7. Points B and C lie on the circle with diameter IIa and the centre of that circle
lies on a circumcircle (see Figure 1.)

Therefore, the centre I of the incircle has the following property : the lines AI,
BI and CI (that is, the angle bisectors of the triangle) go through the centres of
the circumcircles of triangles BIC, CIA and AIB, respectively. The converse is
true as well, namely :
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Figure 1: See Problem 7. Figure 2: See Problem 8.

8. If the lines AM , BM and CM go through the centres of the circumcircles of
triangles BMC, CMA and AMB, then M is the centre of the incircle of ABC.

Indeed, let Ma, Mb and Mc be the points of intersection (different from M) of the
lines AM , BM and CM with the corresponding circles (see Figure 2). Then MMa,
MMb and MMc are diameters of those circles ; therefore, MaA, MbB and McC
are altitudes of the triangle MaMbMc. This implies that ∠BAM = ∠BMcM =
90◦ − ∠BMaC = ∠CMbM = ∠CAM , which means that M lies on the angle
bisector of angle A and, analogously, on the angle bisectors of angles B and C.

Distances between centres of special circles

9. |OI|2 = R2 − 2Rr (Euler’s formula).

10. |OIa|2 = R2 + 2Rra.

11. |IIa|2 = 4R(ra − r).

Figure 3: See Problems 9 and 10.

For the proof of 9 and 10, recall that if M and N are points of intersection of a
line passing through an arbitrary point P with the circle of radius R and centre
O, then |PM | · |PN | = |R2 − |OP |2| ; this follows from the similarity of triangles
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PMM ′ and PNN ′, where M ′ and N ′ are points of intersection of the line OP
with the circle (see Figure 3). It implies that R2 − |OI|2 = |IA| · |IL|, where L is
the point of intersection of the angle bisector of angle A and the circumcircle (see
Figure 4). But |IA| = r/ sin (∠A/2) and, by 7, |IL| = |LB| = 2R× sin (∠A/2), so
R2 − |OI|2 = 2Rr. Analogously,

|OIa|2 −R2 = |IaL| · |IaA| = 2R× sin (∠A/2)× ra
sin (∠A/2)

= 2Rra.

Finally,

|IIa|2 = 2|IL| · (|IaA| − |IA|) = 4R sin (∠A/2) · ra − r
sin (∠A/2)

= 4R(ra − r).

Figure 4: See Problems 9 and 10.

12. Consider the points symmetric to the centres of the excircles with respect to
the centre of the circumcircle. These points lie on the circle of radius 2R with the
centre I.

Two extremal properties of the centre of the incircle

Consider an arbitrary point M inside the triangle ABC. There are many inequa-
lities concerning the distances between M and the vertices of the triangle. We will
consider two such inequalities.

13. Let A1 be the point of intersection of the line AM and the circumcircle. Then

|BM | · |CM |
|A1M |

≥ 2r

and equality holds if M coincides with I.

Suppose that the smallest value of f(M) = |BM |·|CM |
|A1M | is achieved when M is some

point inside ABC. We will show that M = I. Then, since f(I) = 2r (this follows,
for example, from similar triangles BID and IaIC in Figure 4), it would imply
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that if f(M) achieves its minimum inside ABC, then f(M) ≥ 2r. The italicized
statement is far from trivial and should be carefully proven.

Construct the circumcircle of triangle AMC (see Figure 5). Consider triangles
CMA1 formed by moving the point M along the arc AC — they are all similar
(why ?) and hence the ratio |CM |/|A1M | is constant for all of them. Therefore,
if the minimum of f(M) is achieved at M , then the line BM must go through
the circumcentre of the triangle AMC (otherwise, we could reduce |BM | while
keeping |CM |/|A1M | constant). Now, let B1 and C1 be the points of intersection
of lines BM and CM with the circumcircle of ABC. Then, as we saw in the proof
of 9, we have |MA| · |MA1| = |MB| · |MB1| = |MC| · |MC1| and hence

|BM | · |CM |
|A1M |

=
|CM | · |AM |
|B1M |

=
|AM | · |BM |
|C1M |

.

Therefore, lines AM and CM must also pass through the circumcentres of triangles
BMC and AMB respectively. Then M is the circumcentre of ABC (by 8).

Figure 5: See Problem 13. Figure 6: See Problem 14.

One must always be careful when using indirect proofs like the one above (where
we did not directly prove that f(M) ≥ f(I) for all points M inside ABC) since a
function does not always achieve its minimum and maximum.

14. Show that

|AM | sin∠BMC + |BM | sin∠CMA+ |CM | sin∠AMB ≤ p,

and equality holds if M coincides with I.

The proof of this statement will also be indirect : we will show that the point M
where the left-hand side achieves its maximum (if it exists !) coincides with I.

Construct the circumcircle of triangle BMC and extend the line AM until the
second point of intersection A2 (see Figure 6). Apply Ptolemy’s theorem to the
quadrangle BMCA2 to get :

|BM | · |A2C|+ |CM | · |A2B| = |BC| · |A2M |.
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Since the lengths of chords of a circle are proportional to the sines of angles
subtended by those chords, we have

|BM | sin∠A2MC + |CM | sin∠A2MB = |A2M | sin∠BMC

or
|BM | sin∠AMC + |CM | sin∠AMB = |A2M | sin∠BMC.

Comparing the last equation to 14, we see that the left side of the inequality equals
|AA2| sin∠BMC. Therefore, the line AM must go through the circumcentre of
BMC since otherwise we can increase the value of the left-hand side of 14 by
moving M along the arc BC. The rest of the proof is similar to that of 13.

We leave it to the reader to prove that if M = I, then |AA2| sin∠BMC = p. To
see that, you can use 6 and 7 and the fact that ∠BIC = 90◦ + ∠A/2.

When intuition fails

When two similar elements of a triangle are equal (such as two angles or two me-
dians), it seems natural to expect the triangle to be isosceles. Among the problems
of this type, one of the hardest to prove is the Steiner-Lehmus theorem.

15. If a triangle has two angle bisectors of equal lengths, then it is isosceles.

This problem is well-known, whereas the following amusing variation is not usually
familiar even to geometry buffs.

16. Suppose a triangle ABC has angle bisectors AA1, BB1 and CC1. If the triangle
A1B1C1 is isosceles, is ABC isosceles as well ?

Experiments with the graphic software suggest that the answer is no ; 4A1B1C1

can be isosceles while4ABC is not. We do not know of any brief, elegant construc-
tion of a counterexample.

And for now, some more problems.

17. Prove that the angle bisector in a triangle bisects the angle between the cir-
cumradius and the altitude from the same vertex.

18. Let AA1 be the angle bisector of ∠A in a triangle ABC. Show that

|AA1| =
»
bc− |BA1| · |CA1| =

2bc cos (∠A/2)

b+ c
.

19. Suppose a triangle ABC has angle bisectors AA1, BB1 and CC1. Show that
the altitudes of ABC are angle bisectors of A1B1C1.

20. Let M and N be the projections of the point of intersection of the altitudes
of ABC onto the internal and external angle bisector of angle A. Show that the
line MN divides the side BC in half.

21. Let S be the sum of the areas of the three triangles whose vertices are the
points where an excircle touches the sides (or their extensions) of the given triangle
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ABC. Let T be the area of the triangle formed by the points where the incircle
touches the sides of ABC. Prove that S = SABC + T .

22. Suppose a triangle ABC has angle bisectors AA1, BB1 and CC1 ; let L and
K be the points of intersection of the lines AA1 with B1C1 and CC1 with A1B1,
respectively. Show that BB1 bisects angle LBK.

23. Let M and N be the midpoints of the diagonals AC and BC of a cyclic
quadrilateral ABCD. Prove that if BC bisects angle ANC, then AC bisects angle
BMD.

24. In a triangle ABC, let M be the point of intersection of the angle bisector
of angle B with the line passing through the midpoint of AC and the midpoint
of the altitude from the vertex B. Let N be the midpoint of the angle bisector of
angle B. Show that the angle bisector of angle C also bisects angle MCN .

25. Suppose a triangle ABC has angle bisectors AA1, BB1 and CC1, and construct
the circle O through the points A1, B1 and C1. Consider the three chords of O
formed by the segments of the sides of ABC lying inside O. Prove that the length
of one of these chords is equal to the sum of the other two.

26. In a triangle ABC, letK and L be points on the sides AB andBC, respectively,
such that |AK| = |KL| = |LC|. Draw the line parallel to the angle bisector of angle
B through the point of intersection of the lines AL and CK. Let M be the point
of intersection of this line with the line AB. Show that |AM | = |BC|.

27. Let ABCD be a cyclic quadrilateral. Let K be the point of intersection of
the extensions of the sides AB and CD ; let L be the point of intersection of the
extensions of the sides BC and AD. Show that the bisectors of the angles BKC
and BLA are perpendicular and intersect on the line connecting the midpoints of
AC and BD.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This article appeared in Russian in Kvant, 1983(8), p. 32–36. It has been translated
and adapted with permission.
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