Liouville’s theorem for pedants

Oliver Nash

January 8, 2015

Abstract

We discuss Liouville’s theorem on the evolution of an ensemble of classical particles, using language friendly to differential geometers.

1 Liouville’s theorem, classical statement

The classical statement of Liouville’s theorem [4] is that an ‘ensemble’ of particles described by a density function \(\rho = \rho(q_i, p_i, t) \) evolves in time according to the equation:

\[
\frac{\partial \rho}{\partial t} + \sum_i \left(\frac{\partial \rho}{\partial q_i} \dot{q}_i + \frac{\partial \rho}{\partial p_i} \dot{p}_i \right) = 0,
\]

where \(q_i, p_i \) are generalised coordinates on phase space and \(t \) is time. This note discusses its statement in modern language and tries to clarify the question to which Liouville’s theorem is the answer.

2 Classical mechanics

Recall that the modern model of classical mechanics is a symplectic manifold \((M, \omega)\) together with a function:

\[H : M \to \mathbb{R}, \]

the Hamiltonian.

This data determine a vector field \(X_H \) on \(M \), the dual of \(dH \) under identification of \(TM \) and \(T^*M \) using \(\omega \). The defining equation is thus:

\[dH = i_{X_H} \omega, \]
where \(i_{X_H} \omega = \omega(X_H, \cdot) \) is the interior product. \(X_H \) is known as the Hamiltonian vector field associated to \(H \).

We obtain time evolution for the system \((M, \omega, H)\) by integrating \(X_H \) to its flow. I.e., the 1-parameter group of diffeomorphisms\(^1\):

\[
\phi : M \times \mathbb{R} \to M,
\]

which generates \(X_H \), constitutes time evolution. In other words, the integral curves of \(X_H \) represent physical motion according to \(H \).

3 Liouville’s theorem, modern statements

Consider the following:

Proposition 3.1. Let \((M, \omega)\) be a symplectic manifold and \(X \) a vector field on \(M \), then the following are equivalent:

- \(X \) is locally Hamiltonian.
- \(\mathcal{L}_X \omega = 0 \).
- The flow \(\phi_t = \phi(\cdot, t) \) associated to \(X \) consists of symplectomorphisms.

where \(\mathcal{L} \) is the Lie derivative.

Proof. This follows easily from two characteristic properties of the Lie derivative, namely \(\mathcal{L}_X = di_X + i_X d \) (together with the Poincaré lemma) as well as

\[
\mathcal{L}_X = \lim_{h \to 0} \left(\frac{\phi_t^* - id}{h} \right) \quad \text{(use} \quad \frac{d}{dt} \phi_t^* = \phi_t^* \mathcal{L}_X \quad \text{to deduce} \quad \phi_t^* \omega \quad \text{is constant).} \]

For some people, a modern statement of Liouville’s theorem is:

Corollary 3.2. If \((M, \omega, H)\) is a physical system then \(\mathcal{L}_{X_H} \omega = 0 \).

Although the result is definitely relevant, it is somewhat distant from the classical statement: there is no sight of anything playing the role of \(\rho \).

Others view a modern version of Liouville’s theorem to be:

Corollary 3.3. If \((M, \omega, H)\) is a physical system then \(\phi_t \) consists of symplectomorphisms.

A popular view [1, 3] is to regard the following slightly weaker result as the content of Liouville’s theorem:

\(^1\)Technically \(\phi \) may only be locally defined, i.e., it is a sheaf. We will not emphasise this since we would gain nothing by it here.
Corollary 3.4. If \((M, \omega, H)\) is a 2\(n\)-dimensional physical system then \(\phi_t\) preserves \(\omega^n\), i.e., time evolution preserves volume in phase space.

It’s mostly just a matter of taste but my preference is to reserve Liouville’s name for a proposition that actually mentions \(\rho\).

Consider then a physical system about whose initial state we have incomplete information. Instead of our usual model of initial data as a distinguished point of phase space, we generalise and model initial data as a probability measure \(\rho_0\) on phase space for some function:

\[\rho_0 : M^{2n} \to \mathbb{R}, \]

which represents our information (and satisfies \(\int_M \rho_0 \omega^n = 1\)).

Consider time evolution for \(\rho_0\). Because classical mechanics is perfectly deterministic, the probability density \(\rho(x, t)\) of a state \(x \in M\) at any time \(t\) is uniquely determined: just follow the curve representing physical motion through \(x\) back for \(t\) units of time, reaching a point \(x_0\), say. We must have:

\[\rho(x, t) = \rho_0(x_0). \]

In other words prescribing the likelihood of an initial state is the same as prescribing the likelihood of the full history of physical motion through that state. Let’s capture this in a definition:

Definition 3.5. Let \((M, \omega, H)\) be a physical system and let \(\rho : M \times \mathbb{R} \to \mathbb{R}\). We say \(\rho\) obeys Newton’s laws if \(t \mapsto \rho(\alpha(t), t)\) is constant for all integral curves \(\alpha\) of \(X_H\).

The question then is: which functions \(\rho\) obey Newton’s laws? The answer is Liouville’s theorem:

Proposition 3.6. Let \((M, \omega, H)\) be a physical system and let \(\rho : M \times \mathbb{R} \to \mathbb{R}\). Then \(\rho\) obeys Newton’s laws iff

\[\frac{\partial \rho}{\partial t} + \{\rho, H\} = 0, \]

where \(\{\cdot, \cdot\}\) is the Poisson bracket of \((M, \omega)\).

Proof. Differentiate \(t \mapsto \rho(\alpha(t), t)\), use Hamilton’s equations and require that the result be 0. \(\square\)

Note that a tautological restatement of the condition on \(\rho\) in definition 3.5 is simply that:

\[\phi_t^* \rho_t = \rho_0 \quad \text{for all} \ t, \]

where \(\rho_t = \rho(\cdot, t)\) and as usual \(\phi_t\) is the flow generating \(X_H\). By corollary 3.4 we can thus restate proposition 3.6 as:
Proposition 3.7. Let \((M^{2n}, \omega, H)\) be a physical system with flow \(\phi_t\) and let \(\rho : M \times \mathbb{R} \to \mathbb{R}\). Then \(\frac{\partial \rho}{\partial t} + \{\rho, H\} = 0\) iff
\[
\phi^*_t \mu_t = \mu_0 \quad \text{for all } t,
\]
where \(\mu_t = \rho(\cdot, t) \omega^n\) is the probability measure on \(M\) at time \(t\).

We can thus regard Liouville’s theorem as the statement that classical mechanics remains ergodic, even when considering ensembles of particles. I suspect this is the reason for the popularity of regarding corollary 3.4 as a modern statement of Liouville’s theorem even though they’re not quite the same result.

There is one final point, due to Gibbs [2] worth mentioning: we can regard Liouville’s differential equation (1) as a physical continuity equation for probability density flowing through phase space like a fluid with velocity \(X_H\), and without sinks or sources.

The classical continuity equation for a fluid with density \(\rho\) and velocity vector field \(v\) expresses the local conservation of mass and is usually written:
\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0.
\]

This can be seen to be analogous to (1) because a symplectic manifold carries a natural differential operator analogous to the Riemannian divergence operator appearing in (2).

Indeed a symplectic manifold carries a natural symplectic star operator:
\[
\star : \Lambda^k \simeq \Lambda^{2n-k},
\]
defined in exactly the same way as the better-known Hodge star operator from metric geometry. We also have the formal adjoint (wrt \(\omega\)) of the exterior derivative:
\[
d^* = (-1)^k \star d\star : \Omega^{k+1} \to \Omega^k.
\]
Many of the properties familiar from metric geometry still hold (e.g., \(d^* d^* = 0\)) but a little linear algebra reveals an important difference between the symplectic and Hodge stars: the would-be symplectic ‘Laplacian’ vanishes\(^2\), i.e., \(d\) and \(d^*\) anti-commute. In particular \(d^* df = 0\) for any function \(f\). It follows that we can express the Poisson bracket as:
\[
\{f, g\} = d^* (f dg),
\]
for any functions \(f, g\). The operator \(d^*\) is symplectic divergence.

We thus have Gibbs’s statement of Liouville’s theorem in modern language:
\(^2\)It is nevertheless still possible to do ‘Hodge theory’ on a symplectic manifold, see [5].
Proposition 3.8. Let (M, ω, H) be a physical system and let $\rho : M \times \mathbb{R} \to \mathbb{R}$. Then ρ obeys Newton’s laws iff

$$\frac{\partial \rho}{\partial t} + d^*(\rho dH) = 0.$$

References

