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Abstract

We discuss Liouville’s theorem on the evolution of an ensemble of
classical particles, using language friendly to differential geometers.

1 Liouville’s theorem, classical statement

The classical statement of Liouville’s theorem [4] is that an ‘ensemble’ of par-
ticles described by a density function p = p(g;, p;, t) evolves in time according
to the equation:

p dp . Op .\ _

where ¢;, p; are generalised coordinates on phase space and ¢ is time. This
note discusses its statement in modern language and tries to clarify the ques-
tion to which Liouville’s theorem is the answer.

2 Classical mechanics

Recall that the modern model of classical mechanics is a symplectic manifold
(M,w) together with a function:

H:M—R,

the Hamiltonian.
This data determine a vector field Xy on M, the dual of dH under
identification of TM and T*M using w. The defining equation is thus:

dH = z'XHw,



where ix,w = w(Xg,-) is the interior product. Xy is known as the Hamil-
tonian vector field associated to H.

We obtain time evolution for the system (M, w, H) by integrating Xy to
its flow. Le., the 1-parameter group of diffeomorphims!:

¢ MxR— M,

which generates X, constitutes time evolution. In other words, the integral
curves of Xy represent physical motion according to H.

3 Liouville’s theorem, modern statements

Consider the following:

Proposition 3.1. Let (M,w) be a symplectic manifold and X a vector field
on M, then the following are equivalent:

e X is locally Hamiltonian.

o Lxyw=0.

o The flow ¢y = ¢(+,t) associated to X consists of symplectomorphisms.
where L 1s the Lie derivative.

Proof. This follows easily from two characteristic properties of the Lie deriva-
tive, namely Ly = dix + ixd (together with the Poincaré lemma) as well as

Lx = }lbli% (d)z}:id) (use L¢7 = ¢;Lx to deduce ¢jw is constant). O

For some people, a modern statement of Liouville’s theorem is:
Corollary 3.2. If (M,w, H) is a physical system then Lx,w = 0.

Although the result is definitely relevant, it is somewhat distant from the
classical statement: there is no sight of anything playing the role of p.
Others view a modern version of Liouville’s theorem to be:

Corollary 3.3. If (M,w, H) is a physical system then ¢, consists of sym-
plectomorphisms.

A popular view [1, 3] is to regard the following slightly weaker result as
the content of Liouville’s theorem:

!Technically ¢ may only be locally defined, i.e., it is a sheaf. We will not emphasise
this since we would gain nothing by it here.



Corollary 3.4. If (M,w, H) is a 2n-dimensional physical system then ¢,
preserves W™, i.e., time evolution preserves volume in phase space.

It’s mostly just a matter of taste but my preference is to reserve Liouville’s
name for a proposition that actually mentions p.

Consider then a physical system about whose initial state we have incom-
plete information. Instead of our usual model of initial data as a distinguished
point of phase space, we generalise and model initial data as a probability
measure pow™ on phase space for some function:

po: M*™ = R,

which represents our information (and satisfies [, pow™ = 1).

Consider time evolution for py. Because classical mechanics is perfectly
deterministic, the probability density p(x,t) of a state x € M at any time
t is uniquely determined: just follow the curve representing physical motion
through x back for ¢ units of time, reaching a point zg, say. We must have:

p(a,t) = po(wo)-

In other words prescribing the likelihood of an initial state is the same as
prescribing the likelihood of the full history of physical motion through that
state. Let’s capture this in a definition:

Definition 3.5. Let (M,w, H) be a physical system and let p: M x R — R.
We say p obeys Newton’s laws if t — p(a(t),t) is constant for all integral
curves « of Xpg.

The question then is: which functions p obey Newton’s laws? The answer
is Liouville’s theorem:

Proposition 3.6. Let (M,w, H) be a physical system and let p : M xR — R.
Then p obeys Newton’s laws iff

dp
E_F{pv[—[}:ov (1)

where {-,-} is the Poisson bracket of (M,w).

Proof. Differentiate t — p(«(t),t), use Hamilton’s equations and require that
the result be 0. O

Note that a tautological restatement of the condition on p in definition
3.5 is simply that:

Sipe=po  forallt,

where p; = p(-,t) and as usual ¢, is the flow generating Xy. By corollary
3.4 we can thus restate proposition 3.6 as:



Proposition 3.7. Let (M?*",w, H) be a physical system with flow ¢; and let
p: M xR—R. Then &+ {p, H} =0 iff

Gipe = po  for allt,
where py = p(-, t)w™ is the probability measure on M at time t.

We can thus regard Liouville’s theorem as the statement that classical
mechanics remains ergodic, even when considering ensembles of particles. I
suspect this is the reason for the popularity of regarding corollary 3.4 as a
modern statement of Liouville’s theorem even though they’re not quite the
same result.

There is one final point, due to Gibbs [2] worth mentioning: we can
regard Liouville’s differential equation (1) as a physical continuity equation
for probability density flowing through phase space like a fluid with velocity
Xy, and without sinks or sources.

The classical continuity equation for a fluid with density p and velocity
vector field v expresses the local conservation of mass and is usually written:

dp

E+v-(pv):0. (2)

This can be seen to be analogous to (1) because a symplectic manifold car-
ries a natural differential operator analogous to the Riemannian divergence
operator appearing in (2).

Indeed a symplectic manifold carries a natural symplectic star operator:

%t AP~ p2nE

b

defined in exactly the same way as the better-known Hodge star operator
from metric geometry. We also have the formal adjoint (wrt w) of the exterior
derivative:

d* = (=1)F % dx : Q" = QF,

Many of the properties familiar from metric geometry still hold (e.g., d** =
0) but a little linear algebra reveals an important difference between the
symplectic and Hodge stars: the would-be symplectic ‘Laplacian’ vanishes?,
i.e., d and d* anti-commute. In particular d*df = 0 for any function f. It
follows that we can express the Poisson bracket as:

{f, 9} =d"(fdg),

for any functions f, g. The operator d* is symplectic divergence.
We thus have Gibbs’s statement of Liouville’s theorem in modern lan-
guage:

2Tt is nevertheless still possible to do ‘Hodge theory’ on a symplectic manifold, see [5].
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Proposition 3.8. Let (M,w, H) be a physical system and let p : M xR — R.
Then p obeys Newton’s laws iff

p | . _
E‘i‘d (de) =0.
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